M.Sc. 1st Semester Examination, 2013 PHYSICS

PAPER – PHS - 103(A & B)

Full Marks: 40

Time: 2 hours

The figures in the right-hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

Illustrate the answers wherever necessary

GROUP - A

[Marks .: 20]

Time: 1 hour

Answer Q. No. 1 and 2 and any one from the rest

1. Answer any three bits:

 2×3

(a) What is the difference between source program and Object program.

(furn Over)

- (b) Give at least three rules for naming a Real variable in FORTRAN 77.
- (c) Write the following algebraic expression into an equivalent FORTRAN statement

$$\log_{10} x + e^{|x+y|} + \frac{a}{b} (1 - x^{1/3} + y^{1/2})$$

- (d) If A = 2.5, B = 8.25, I = 5 then find the value of L = A/5.0 + 8/5 + B/I
- (e) Explain Random Access Memory and compare it with Read Only Memory.
- 2. Answer any one bit:

4

(a) Find the output of the FORTRAN program after the following statement is executed.

(Continued)

- 9 CONTINUE
- 10 CONTINUE
- 11 WRITE (*, 20) I, I, K parties
- 20 Format (2x, 3(15, 2x)) STOP OSIO END
- (b) Consider a particle falling down freely under the gravity with initial velocity u. The displacement s at any time t is given by

$$s = ut + \frac{1}{2}gt^2$$

where g = 9.8 m/sec². Write a program to calculate s for u = 1 m/s and for values of t from 0 sec to 2 sec increment 0.5 sec.

- 3. (a) Write a FORTRAN program to multiply all integers divisible by 7 between two numbers N1 and N2 (input N1 and N2).
 - (b) Write a program to form a (5×5) matrix 'A' whose elements $A_{ij} = i + j$. 5 + 5

4. Write a function subprogram to find the value of n!. Use this function to find the value of ${}^{n}C_{\tau}$ for given values of n and r.

GROUP-B

[Marks : 20]

Time: 1 hour

Answer any four questions:

 5×4

- 1. Establish Lagrange's polynomial interpolation formula (No remainder necessary).
- 2. Solve the following system of equation by Gauss -elimination method

$$2x + 3y + z = 9$$

$$x + 2v + 3z = 6$$

$$3x + y + 3z = 8.$$

3. Compute the integral.

$$\int_{0}^{1} \frac{dx}{1+x^2}, \quad \text{Miles}$$

by Simpon's $\frac{1}{3}$ rule and then use it to compute the value of Π

4. Find by the method of least squares a formula of the type f(x) = a + bx, which fit the following data

$$x$$
 2 4 6 8 10 $f(x)$ 1.00 3.85 6.50 9.35 12.05

5. Find the largest magnitude eigenvalue of the matrix

$$\begin{bmatrix} 1 & -3 & 2 \\ 4 & 4 & -1 \\ 6 & 5 & 5 \end{bmatrix}$$

Find also the corresponding eigenvector.

6. Using Runge-Kutta method, find y(1.1) given

$$\frac{dy}{dx} = 3x + y^2, \quad y(1) = 1 \cdot 2$$