M.Sc. 3rd Semester Examination, 2010

PHYSICS

PAPER-PH-2103 (A+B)

Full Marks: 40

Time: 2 hours

The figures in the right-hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

Illustrate the answers wherever necessary

PAPER-PH-2103 A

[Marks : 20]

Answer Q. No. 1 and any one from the rest

1. Answer any five bits:

 2×5

(a) Discuss the meaning of systematics-α-decay energies.

- (b) With energy level diagram show the isomeric transition schemes of $_{35}\mathrm{Br^{80}}$ for γ , β particles and K-captures.
- (c) Write the name with example of the following odd 'A' nuclei:

(i)
$$_2X_1^A$$
 and $_1Y_2^A$

(ii)
$$_{Z}X_{N}^{A}$$
 and $_{Z}X_{N_{1}}^{A_{1}}$

- (d) Drawing a block diagram of double focussing mass spectrometer, discuss the separation of isotopes.
- (e) Graphically show the continuous nature of β-ray spectrum and indicate the end point energy.
- (f) In a nuclear beta-decay what is a Fermi-Kurie plot?
- (g) What are the mass-parabola for isobaric nuclei?

(h) Explain non-conservation of parity in beta -decay with symbolic (<u>by Spin</u> and <u>Linear</u> <u>momenta</u>) presentation by products nucleus and particles of the following β-decay:

$$_{27}\text{Co}_{33}^{60} \rightarrow {}_{28}\text{Ni}_{32}^{60} + \beta^{-} + \overline{\nu}_{e}$$

2. Discuss the basic principle of the method (Rabi's) of determining the magnetic moment (μ_i) of a nucleus and describe the experimental arrangement.

5 + 5

- 3. (a) What do you mean multiple character (E-1, M-1) of γ -radiation? $2\frac{1}{2}$
 - (b) Find the multipole character of γ -radiation emitted in the following transitions with spin-parity values as shown below: $2\frac{1}{2} \times 3$

The numbers given in the above diagrams show the spin of the nuclear state and '+' or '-' indicates the parity.

PAPER-PH-2103 B

(Particle Physics)

[Marks : 20]

Answer Q. No. 1 and any one from the rest

1. Answer any five bits:

 2×5

(a) Why is it necessary to introduce the colour degree of freedom for each quark flavour?

- (b) The CPT theorem predicts that an unstable particle and its anti-particle have same mass and life time. Explain.
- (c) Define G-parity. Where it is conserved?
- (d) The eigenvalue of the charge conjugation operator of a system of fermion-antifermion is $(-1)^{l+s}$ where l is the relative orbital angular momentum and s is the total spin of the system.
- (e) Define structure constant in Lie group. Write down the generators in SU(2) group.
- (f) Define Mandelstam variables and write their relationship.
- (g) Calculate the value of strength of coupling in weak force in natural unit.
- (h) Explain spontaneous symmetry breaking in particle physics.

2.	(a) Calculate the invariant mass for $(\pi^+ - p)$	
	system for $\Delta^{++}(1232)$ resonance.	5
	(b) Prove that in SU(3)	5
	$3 \otimes 3 \otimes 3 = 10 \oplus 8 \oplus \overline{8} \oplus 1$	

- 3. (a) Write down GNN (Gellman-Nelman Nakano) formula for quarks. Calculate the charges for top and bottom quarks by this formula.
 - (b) How intrinsic parity of π^- meson is determined experimentally?