M.Sc. 4th Semester Examination, 2012 PHYSICS

PAPER- PHS-402 (A & B)

Full Marks: 40

Time: 2 hours

The figures in the right-hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

Illustrate the answers wherever necessary

PAPER - PHS - 402(A)

[Marks: 20]

1. Answer any five from the following:

- 2×5
- (a) Using experimental evidences, set up the wave -equation for the ground state of the deuterion.
- (b) Diagrammatically present the p p interactions system at below 10 MeV scattering energy.

- (c) Discuss with example a different channels for nuclear reactions.
- (d) What is magic numbers? Write a semi-magic and magic numbers.
- (e) State the name of the nuclear reaction which follow break up by chipping of following small fragments.

$$_{33}$$
As⁷⁵ (α , 18 Z 419) $_{17}$ Cl³⁸.

- (f) What are the sources of neutrons?
- (g) On the basis of the extreme single particle shell model, using shell configuration predict the spin and parity of the ground state of 6C¹².
- (h) Graphically represent the types of neutrons with energy.

2. Answer any one bit:

(a) What is S.I.M.? Discuss picturally how Bohr and Wheeler used the liquid-drop model to explain the process of nuclear fission. 2 + 8

(b) Discuss neutron optics. Derive the relation between refractive index (μ) and scattering length
 (a) of a material with nuclei per unit volume (N) due to neutron for wave length (λ).

(Quantum Field Theory)

PAPER - PHS - 402(B)

[Marks: 20]

Answer Q.No. 1 and any one from the rest

1. Answer any five:

 2×5

- (a) Define gauge co-variant derivative and why was it introduced?
- (b) State the usefulness of normal ordering and time ordering.
- (c) Show that:

$$a^+|n_K\rangle$$
 and $a|n_K\rangle$

are eigen states of the number operator N_K for real scalar field.

- (d) Why C_p is violated in weak interactions?
- (e) State why it is necessary to study quantum field theory to understand interactions of particles. What is meant by second quantization?
- (f) Show that for a Klein-Gordon field

$$a_{k} | n_{k} \rangle = \sqrt{n_{k}} | n_{k} - 1 \rangle$$

$$a_{k}^{+} | n_{k} \rangle = \sqrt{n_{k+1}} | n_{k+1} \rangle$$

where each symbol has its usual meaning.

- (g) What is Higg's mechanism? Discuss briefly about it.
- (h) Distinguish between 'local' gauge invariance and 'global' gauge invariance.
- 2. (a) Prove that the invariance of the scalar field

 Lagrangian under space time translation leads to

 stress-energy tensor

$$T^{\mu\nu} = \frac{\partial L}{\partial(\partial_{\mu}\phi)} \partial^{\nu}\phi - g_{L}^{\mu\nu}.$$

(b) Prove that:

$$T_{r} \left[\left(p_{2}' + m \right) \gamma^{\mu} \left(p_{1}' + m \right) \gamma^{\lambda} \right]$$

$$= 4 \left[p_{2}^{\mu} p_{1}^{\lambda} + p_{2}^{\lambda} p_{1}^{\mu} + m^{2} g^{\mu \lambda} - p_{1} \cdot p_{2} g^{\mu \lambda} \right].$$

$$5 + 5$$

- 3. (a) Deduce an expression for Fermionic propagator.
 - (b) Define parity, time reversal and charge conjugation operations. Obtain any two of the operators for the Dirac field.
 - (c) Give an idea about neutral current and symmetry breaking with Feynman diagram. 4 + 2 + 4