M.Sc. 3rd Semester Examination, 2012 PHYSICS

PAPER - PHS-304

Full Marks: 40

Time: 2 hours

The figures in the right-hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

Illustrate the answers wherever necessary

PAPER - PHS-304

(Special Paper: Solid State Physics)

[Marks : 40]

Time: 2 hours

Answer Q. No. 1 and any three from the rest

1. Answer any five bits:

 2×5

(a) Explain what is meant by Plasmon.

(Turn Over)

- (b) Find the bandwidth in simple cubic crystal along [110] direction according to tight binding approximation.
- (c) Explain what is meant by F-center.
- (d) The average energy required to create a Frenkel defect in an ionic crystal, A²⁺ B²⁻, is 1.4 eV. Calculate the ratio of Frenkel defects at 300 K and 600 K in 1 gm of crystal.
- (e) Calculate the Burger vector in Aluminium crystal. Lattice constant is a = 4.05 Å.
- (f) Explain what is meant by complex dielectric constant.
- (g) Plot screened and unscreened Coulomb potential of a unit positive change as seen by an electron in a solid.
- 2. (a) Derive the energy of electron in a solid according to T.B.A.
 - (b) Explain what is meant by reduced zone scheme.

8

3.	(a)	Derive the expression of Thomas Fermi dielectric function assuming screening behaviour of electron gas in a metal.	8
	(b)	What is Thomas Fermi Screening length?	2
4.	(a)	Describe in detail the dipole theory of Ferro-electricity.	5
	(b)	Derive an expression of A.C. polarizability assuming frequency dependence of dipolar polarizability in a dielectric.	5
5.	(a)	Derive an expression for conductivity in an ionic crystal.	5
	(b)	Find an expression for dislocation energy of a screw dislocation.	5
6.	(a)	Derive the dispersion relation corresponding to Frenkel exciton.	5
	(b)	Describe in detail de Hass-van Alphen effect.	4
	(c)	What is meant by ultraquantum region.	1

(Special Paper: Applied Electronics)

PAPER - PHS-304 A

[Marks : 20]

Time: 2 hours

Answer Q. No. 1 and any one from the rest

1. Answer any five bits:

 2×5

- (a) Explain with circuit diagram, how a bridge amplifier can be used as a transducer.
- (b) Discuss about the advantages of active filters over passive ones.
- (c) Draw the circuit diagram of an antilog amplifier using matched pair of transistors and OP-AMP.
- (d) Design a 2nd order high-pass Butterworth filter with cut-off frequency of 10 kHz.
- (e) Explain the advantages of switching regulators over series regulators.

(/)	Draw the circuit diagram of a four	quadrant			
	analog multiplier using transistor and OP-AMP.				
	State one of its uses.	-			

- (g) Why a logarithmic amplifier cannot be used for very low and very high input voltages?
- 2. (a) What do you mean by an instrumentation amplifier? Draw the circuit diagram of an instrumentation amplifier using 3-OP-AMPs and derive the expression for the output voltage. 1+4
 - (b) Draw the block diagram of a Phase Locked Loop and describe its operation. 1+2
 - (c) Explain the use of an Ex-OR gate as a digital phase detector.
- 3. (a) Explain the circuit operation of an inverting Schmitt trigger and find out an expression for the hysteresis voltage.
 - (b) How the circuit of a Schmitt trigger can be changed to design a voltage controlled oscillator and derive the expression for the output frequency.

2

5

PAPER - PHS-304 B

[Marks : 20]

Time: 2 hours

Answer Q. No. 1 and any one from the rest

1. Answer any five bits:

 2×5

- (a) Why ECL is faster than TTL?
- (b) Draw the circuit of 2 input C-MOS NAND gate.

Draw the output waveform.

(d) Draw the unit cell of SRAM.

- (e) State the working principle of optical memory in compact disk.
- (f) Establish the relation of flip-flop, register and memory cell.
- 2. (a) State briefly the working principle of 3-phase CCD unit.
 - (b) What do you mean by "field programmable logic array"? Give example.
 - (c) Show the circuit diagram of "two-phase ratioless dynamic shift" register.
 - (d) (32 K × 16) memory IC has data line and address line. Complete the above sentence.
- 3. (a) Solve the following equation by 8: 1 Multiplexer IC:

$$Y = \sum m(2, 5, 7, 9, 12, 13).$$
 3

(b) Design TTL tri-state inverter logic gate and show the three different states.

3

3

3

1

3

(c) What do you mean by propagation delay? Considering propagation delay show the output of the following circuit:

(d) What is VLSI?