
Chapter 4

Genus value of m-polar fuzzy

graphs∗

4.1 Introduction
In developed countries, lot of cities are connected by the roads. Economically well

developed country may have different vehicles for transport. These are not affordable

for transport on all days due to heavy traffic. Crossing between the roads may lead

to the accident or time consuming. To avoid such crossing, flyovers or tunnels are

planted in the Highways. For these kinds of situations the planarity concept are used.

This chapter introduces embedding of mPFGs developed on the surface of the

spheres. The m-polar fuzzy genus graph (mPFGG), strong and weakmPFGG is

described withits genus value. There are discussed isomorphism characteristics on

mPFGG. The relationship is established between the mPFG’s planarity value and

genus value.The Euler polyhedral equation is also defined with regard to thegenus

value of the mPFGG. After this, the topological surface application of mPFGG will

be given.

4.2 Embedding of m-polar fuzzy graph
The genus g(G) of a crisp graph G is the least integer n, then G is Sn embeddable.

Definition 4.2.1. Let G be an mPFG and S be any surface. The graph G is defined as

S-embedding of the mPFG G if G can be drawn in S if there are no mPFEs intersected.

∗A part of the work presented in this chapter is published in Journal of Intelligent and Fuzzy

Systemsg, 34(3), 1947–1957 (2018).
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We show that the embedding of mPFG in plane and sphere are equal. Since pressing

or stretching will distort the sphere, its embedding property will remain unchangeable.

An mPFG drawn on the plane region can be drawn at the sphere surface since it

is like a planesurface, which has an embedding property. The approach for mPFGs is

identical to that of crisp graphs.

4.2.1 Relation between the plane and sphere of an m-polar

fuzzy graph

A stereographic projection may clarify the relationship between the plane surface

and the sphere surface. The sphere must be positioned on the surface of the plane

and SP (South Pole) must be the point of contact between the sphere and the plane.

Draw a perpendicular line from SP which is extending to the sphere’s surface, naming

it NP (NorthPole). Let G be an mPFG on the plane (See Fig. 4.1). We construct

straight lines from NP to all the G vertices that cross the sphere. Afterwards, we

get a unique mPF value of vertices and edges in the sphere, call the graph as G′. In

the sphere, G′ is an mPFG (See Fig. 4.1). Conversely, at any point of mPFG G on

a sphere else like NP we can connect a vertex where the line from NP through the

specified points intersects the plane. So, going to add all the points in the plane and

trying to apply the same membership values to the vertexes and edges, we get a mPFG

in this plane.(see Fig. 4.1).

Therefore there is one-to-one matching of mPF face values of both graphs (equal)

between the two graphs. On the infinity region of the plane, the vertices in the plane

are connected to the NP . As a result, NP is the infinity area in the sphere. We have

the following theory from the above point of view.

Theorem 4.2.1. Any mPFG embedded on the plane’s surface can be embedded on the

sphere’s surface with the same mPFEs.

4.3 Genus value of m-polar fuzzy graphs
The genus value of an mPFGs is strongly linked to the planarity value of the mPFGs.

We are now defining a mPFGs genus value.

Definition 4.3.1. An mPFG G is said to have a genus if a least positive integer n

is available, then the mPFG G is Sn-embeddable. In other words, if the intersection
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Figure 4.1: Embedding of a 3PFG in sphere

points between the edges for a geometrical representation are P1, P2, . . ., Pn, then

P∗(G) is indicated as the genus value of the mPFG G or P∗ = (P∗1 ,P∗2 , . . .P∗m) where,

P∗i =
{I iP1

+ I iP2
+ . . .+ I iPk

1 + {I iP1
+ I iP2

+ . . .+ I iPk}
, for i = 1, 2, . . . , m

.

Figure 4.2: 3PFG

Example 4.3.1. Consider, Fig 4.2 shows a 3PFG of K6. Fig 4.3 shows the cor-

responding 3PFGG. Let P1, P2, P3 be the three points of intersection between 3 po-

lar fuzzy edges of these 3PFGG. Suppose P3, P2 and P1 be the point of intersection

between the edges ((f, c)(0.3, 0.4, 0.6)) and ((e, b), (0.3, 0.2, 0.3)),((b, a), (0.3, 0.2, 0.3)),

((d, e), (0.2, 0.4, 0.5)) and ((c, a), (0.2, 0.3, 0.5)) and ((f, d), (0.4, 0.3, 0.6)) and respec-

tively. The genus of the 3PFG is calculated as follows.
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Figure 4.3: Corresponding 3PFGG

I(a,b) = ( 0.3
min{0.3,0.9} ,

0.2
min{0.4,0.3} ,

0.3
min{0.5,0.4}) = (1, 0.67, 0.75),

I(d,f) = ( 0.4
min{0.4,0.4} ,

0.3
min{0.6,0.5} ,

0.6
min{0.7,0.7}) = (1, 0.6, 0.86),

I(e,d) = ( 0.2
min{0.3,0.4} ,

0.4
min{0.5,0.5} ,

0.5
min{0.6,0.7}) = (0.67, 0.8, 0.83),

I(a,c) = ( 0.2
min{0.3,0.3} ,

0.3
min{0.4,0.4} ,

0.5
min{0.5,0.6}) = (0.67, 0.75, 1),

I(c,f) = ( 0.3
min{0.3,0.4} ,

0.4
min{0.4,0.6} ,

0.6
min{0.6,0.7}) = (1, 1, 1),

I(b,e) = ( 0.3
min{0.9,0.3} ,

0.2
min{0.3,0.5} ,

0.3
min{0.4,0.6}) = (1, 0.67, 0.75).

Therefore, the intersecting values are IP1 =
I(a,b)+I(d,f)

2
= (1, 0.64, 0.81), IP2 =

I(e,d)+I(a,c)
2

= (0.67, 0.775, 0.92) and IP3 =
I(c,f)+I(b,e)

2
= (1, 0.835, 0.875). Then, P∗1 =

1+.67+1
1+[1+.67+1]

= 2.67
3.67

= 0.727, P∗2 = 0.64+0.775+0.835
1+[0.64+0.775+0.835]

= 2.25
3.25

= 0.692 and

P∗3 = 0.81+0.92+0.875
1+[0.81+0.92+0.875]

2.605
3.605

= 0.722

Hence, the genus of the 3PFG of Fig 4.2 is (0.727, 0.692, 0.722).

Remark 4.3.1. Similarly to that planarity value of an mPFG, the genus value of

mPFG is bounded, i.e. 0 < P∗i ≤ 1 ∀ i = 1, 2, . . . ,m.

Theorem 4.3.1. Any mPFG has a genus.

Proof. Let G be an mPF multigraph. The mPF multigraph is geometrically repre-

sented to determine the number of crossings between mPFEs.

Case 1: Let
k∑
j=1

I iPj = 0, ∀ i.

Then the number of intersection of mPFEs in G is zero, and the given mPFG’s
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planarity value is (1, 1, . . . , 1). Then the mPFG is obviously planar mPFG. Now,

P∗i =
{I iP1

+ I iP2
+ . . .+ I iPk

1 + {I iP1
+ I iP2

+ . . .+ I iPk}
=

0

1 + 0
= 0, i = 1, 2, . . . m.

Therefore, the given mPFG has genus value(0, 0, . . . , 0).

Case2: Let
k∑
j=1

I iPj 6= 0, ∀ i.

Then, an intersection of edges exists in the mPFG G. The genus of an mPFG

achieved by the number of intersection of the mPFEs in G. using the definition of

genus value of the mPFG the we get it.

Hence, every mPFG has a genus.

Theorem 4.3.2. For every mPFG G, if it has mPF genus value (0, 0, . . . , 0) iff mPF

planarity value is (1, 1, . . . , 1).

Proof. Let G be an mPFG having mPF genus value (0, 0, . . . , 0). For a certain geo-

metrical representation, let the intersection points between the edges be P1, P2, . . . , Pk.

Then using the definition of genus value,
k∑
j=1

I iPj = 0, ∀ i. Then

P∗i =
1

1 + {I iP1
+ I iP2

+ . . .+ I iPk}
=

1

1 + 0
= 1, for i = 1, 2, . . . m.

Hence, the given mPFG is mPF planar graph and (1, 1, . . . , 1) is the planarity value

of that graph.

Conversely, let G be an mPFG having mPF planarity value (1, 1, . . . , 1). This

implies,
k∑
j=1

I iPj = 0, i = 1, 2, . . . ,m. Therefore,

P∗i =
{I iP1

+ I iP2
+ . . .+ I iPk

1 + {I iP1
+ I iP2

+ . . .+ I iPk}
=

0

1 + 0
= 0, i = 1, 2, . . . m.

Hence, the given mPFG is mPFGG with genus value (0, 0, . . . , 0).

The relationship between the genus and the degree of planarity of mPFG is indicated

below from this Theorem.

Theorem 4.3.3. For every mPFG, P∗i = 1− Pi, i = 1, 2, . . . ,m.

Theorem 4.3.4. Let G be an mPF complete multigraph. The mPF genus value P∗ =

(P∗1 ,P∗2 , . . . ,P∗m) is given by P∗i = nk
1+nk

, i where the number of points at which the

edges intersect is nk.
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Proof. We have pi ◦ Bj(xy) = min{pi ◦ A(x), pi ◦ A(y)} ∀ x, y ∈ V , i = 1, 2, . . . ,m

and j = 1, 2, . . . , p, because G is complete. Let P1, P2, . . . , Pnk be the points at which

the edges intersect in G. For an arc (x, y) in G, I i(x,y) = pi◦Bj(xy)
min{pi◦A(x),pi◦A(y)} = 1, i.

Therefore, for the point P1 at which the edges (a, b) and (c, d) are intersect, IP1 =

(1, 1, . . . , 1) is the intersecting value. So, IPi = (1, 1, . . . , 1) for i = 1, 2, . . . , nk. Now

for i = 1, 2, . . . ,m

P∗i =
{I iP1

+ I iP2
+ . . .+ I iPk

1 + {I iP1
+ I iP2

+ . . .+ I iPk}
=

1 + 1 + . . .+ 1

1 + (1 + 1 + . . .+ 1)
=

nk
1 + nk

.

Therefore, the mPF genus P∗ = (P∗1 ,P∗2 , . . . ,P∗m) where P∗i = nk
1+nk

, for i = 1, 2, . . . ,m.

Theorem 4.3.5. Let G be an mPFGG with mPF genus value P∗ = (P∗1 ,P∗2 , . . . ,P∗m)

is s.t. P∗i < 0.5 for i = 1, 2, . . . ,m. Then the number of points at which the mPFSEs

intersect is at most one in G.

Proof. Whenever possible, let G has at least two points of intersection P1 and P2

between two mPFSEs. For any mPF strong edge ((s, t), Bj(s, t)), I i(s,t) ≥ 0.5 for

i = 1, 2, . . . ,m. So for any two intersecting mPFSEs ((s, t), Bj(s,

t)) and ((w, x), Bk(w, x)) and
Ii
(s,t)

+Ii
(w,x)

2
≥ 0.5 i.e. I iP1

≥ 0.5, for i = 1, 2, . . . ,m,.

Eventually,I iP2
≥ 0.5. Then 1 + I iP1

+ I iP2
≥ 2 i.e. 1

1+IiP1+I
i
P2

≤ 0.5 and

P∗i =
{I iP1

+ I iP2
}

1 + {I iP1
+ I iP2

}

=
1 + {I iP1

+ I iP2
} − 1

1 + {I iP1
+ I iP2

}

=
1 + {I iP1

+ I iP2
}

1 + {I iP1
+ I iP2

}
− 1

1 + {I iP1
+ I iP2

}

= 1− 1

1 + {I iP1
+ I iP2

}
≥ 0.5.

This is a contradiction since for i = 1, 2, . . . ,m, P∗i < 0.5.

Hence,there can not be exist two points.

Theorem 4.3.6. Let G be an mPFGG with mPF genus value P∗ = (P∗1 ,P∗2 , . . . ,P∗m).

If P∗i ≥ 0.33 for i = 1, 2, . . . ,m, then G can not contain any point at which two

mPFSEs intersect.
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Proof. If possible, let P be a point at which twomPFSEs ((s, t), Bj(s, t)) and ((w, x), Bk(w, x))

are intersect. For any mPFSEs ((s, t), Bj(u, v)) we have I i(s,t) ≥ 0.5, i = 1, 2, . . . ,m.

For minimum value of I i(s,t), I
i
(w,x) and I iP = 0.5, i = 1, 2, . . . ,m. Then P∗i < 0.33 for

i = 1, 2, . . . ,m, a contradiction. So, no intersecting point between two mPFSEs can

be found in G

Theorem 4.3.7. Let G be an mPFGG with mPF genus value P∗ = (P∗1 ,P∗2 , . . . ,P∗m)

be such that P∗i < 0.5, i = 1, 2, . . . ,m and considerable number c. Then the number of

point of intersection between considerable edges in G is at most [1
c
] or 1

c
− 1 according

as 1
c

is not an integer or an integer respectively.

Proof. Let G = (V,A,B) be an mPFGG where B = {((s, t), Bj(s, t)),

j = 1, 2, . . . , p : (s, t) ∈ V × V }. Let 0 < c < 0.5 be the considerable number.

Let ((s, t), Bj(s, t)) be a considerable edge, then we have pi ◦ B(qr) ≥ c min{pi ◦

A(q), pi ◦ A(r)}, i = 1, 2, . . . ,m. This means that, I i(s,t) ≥ c for i = 1, 2, . . . ,m. Let

P1, P2, . . . , Pl be the l intersection points between considerable edges. Also let, P1 be

the point oat which considerable edges ((s1, t1), B
j(s1, t1)) and ((s2, t2), B

j(s2, t2)) are

intersect. Then I iP1
=

Ii
(s1,t1)

+Ii
(s1,t1)

2
≥ c. So,

l∑
n=1

I iPn ≥ lc

i.e. 1 +
l∑

n=1

I iPn ≥ 1 + lc

i.e.
1

1 +
l∑

n=1

I iPn

≤ 1

1 + lc

i.e. 1− 1

1 +
l∑

n=1

I iPn

≥ 1− 1

1 + lc

i.e.

l∑
n=1

I iPn

1 +
l∑

n=1

I iPn

≥ lc

1 + lc
.

This implies,

P∗i ≥
lc

1 + lc
. (4.1)

Again we know,

P∗i ≤ 0.5. (4.2)
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From 4.1 and 4.2 we get,

0.5 ≥ P∗i ≥
lc

1 + lc
, i.e. l ≥ 1

c
.

It gives the value of l

l =

[1
c
], if 1

c
not an integer

1
c
− 1, if 1

c
is an integer

Hence the proof.

The following definition is given for the strong mPFGG.

Definition 4.3.2. A mPFGG G is called strong if its genus value is P∗ = (P∗1 ,P∗2 , . . . ,P∗m)

s.t. P∗i ≥ 0.33, i = 1, 2, . . . ,m. If the statement is not true then it is weak.

Theorem 4.3.8. If G is weak mPF planar graph, then G is a strong mPFGG.

Proof. Let G is weak mPF planar graph. Then Pi ≤ .67 for i = 1, 2, . . . ,m. Again,

P∗i = 1− Pi, for i = 1, 2, . . . ,m, so 1− P∗i = Pi ≤ .67, i.e. P∗i ≥ 0.33, ∀ i. Hence, G

is strong mPFGG.

Theorem 4.3.9. If G is weak mPFGG, then G is a strong mPF planar graph.

Proof. Similarly we prove this Theorem using the above Theorem’s procedure.

4.3.1 Isomorphism of m-polar fuzzy genus graph

The isomorphism between the two mPFGGs in the topological surfaces is always

the same. Suppose that there is an isomorphism between the two mPFGs and one is

mPFGG, and another is mPFGG. The following results are now available.

Theorem 4.3.10. Let G1 be an mPFG and its corresponding mPFGG be G′1. If there

an isomorphism k : G1 → G2 exists where, G2 is an mPFG, then G′2 can be defined as

mPFGG s.t. k′ : G′1 → G′2 is an isomorphism.

Proof. Let G′1 be the mPFGG of the given mPFG G1 and there an isomorphism

k : G1 → G2 exists where G2 is an mPFG. Since, there is an one-to-one and onto

functions between two mPFGs have the same mPF values of edges and vertices. Then
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there a graph G′2 exists and this graph is the mPFGG of G2 and there is one-to-

one correspondence between the G′1 and G′2 have the same mPF values of edges and

vertices. Hence k′ : G′1 → G′2 is an isomorphism.

Theorem 4.3.11. Let G1 and G2 be two isomorphic mPFG with mPF genus values

(P∗1 ,P∗2 , . . . ,P∗m) and (K∗1,K∗2, . . . ,K∗m)) respectively. Then K∗i = P∗i , ∀ i = 1, 2, . . . ,m.

Proof. Let two isomorphic mPFGs be G1 and G2. By Theorem 4.14 , there an isomor-

phism between two mPFGG G′1 and G′2 exists. The mPF genus values of G′1 and G′2

are (P∗1 ,P∗2 , . . . ,P∗m) and (K∗1,K∗2, . . . ,K∗m)) respectively. Again since, the mPF genus

values are same as G′1 and G′2 are isomorphism.

Hence, K∗i = P∗i , ∀ i = 1, 2, . . . ,m.

4.3.2 Euler polyhedral equation for m-polar fuzzy genus graphs

In the field of graph theory, Euler clarified several ideas. Euler polyhedral equation

makes it easier to find the genus value of a graph and to define the limitations on the

genus values. We have proved here that the Euler polyhedral equation for an mPFGG.

Theorem 4.3.12. Let G be a connected mPFGG with edge set E, vertex set V and

the m-polar fuzzy faces value be SF . Then the mPF genus value satisfies the inequality

in below:

V ∗i − E∗i + S∗Fi ≤ 2− P∗i , i = 1, 2, . . . ,m, where

V ∗i = The sum of the i− th membership values of the vertices in G
Total number of vertices in G

,

E∗i = The sum of the i−th membership values ofthe edges in G
Total number of edges in G

,

S∗Fi = The sum ofthe i−th membership values of the m−polar fuzzy faces in G
Total number of edges in G

.

Proof. By the process of contradiction, we prove that theory. Suppose we have that

V ∗i − E∗i + S∗Fi > 2− P∗i , ∀ i = 1, 2, . . . ,m.

Case 1: Let P∗i = 0, ∀ i.

Then (0, 0, . . . , 0) is the mPF genus value. The inequalities mentioned above are

strictly greater than 2. But, V ∗i , E∗i , S
∗
Fi

all have been specified to range from 0 to 1.

Then the value V ∗i − E∗i + S∗Fi would be in the range of (0, 1). This inequality does

not therefore occur. So, a contradiction arise and then, V ∗i − E∗i + S∗Fi ≤ 2− P∗i ∀ i.

Case 2: Let 0 < P∗i < 1 ∀ i. Then the mPF genus value lies within (0, 1). Again,

V ∗i , E∗i , S
∗
Fi

, all have been specified to range from 0 to 1. Then, V ∗i − E∗i + S∗Fi lie in
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(0, 1). This inequality does not therefore occur. So, a contradiction arise and then,

V ∗i − E∗i + S∗Fi ≤ 2− P∗i ∀ i.

Therefore, by use of the relations, the mPF genus value is calculated: V ∗i −E∗i +S∗Fi ≤

2− P∗i , for i = 1, 2, . . . ,m.

Corollary 4.3.1. Every mPF genus value of an mPFGG has supremum and infimum,

i.e. 0 ≤ P∗i ≤
V ∗i −E∗i +S∗Fi

2
, i = 1, 2, . . . ,m.

Figure 4.4: The grid network

4.4 m-polar fuzzy genus value in topological surface
Modification or modifying of the given graph in any other directions stands for

topology. The graphs are embedded in topology in any surface or region. Topology

is a large field to know the surface classification and These surfaces are available

anywhere where we need them. the concept of the surface is commonly used in the

field of physical science, aerodynamic and computer engineering.

The number of systems linked in the computer network is so large that no crossing

is seen in a grid between systems. The network grid represents all structures that have

to be taken as vertices and The link between them is the links that are considered as

edges. Therefore, all edges of the network grid are connected in less time to enhance

the communication between the two.

There are mPF values for the network grid. The vertices and edges have the mPF

value. So it has to resembles like mPFG. The membership values of the vertices are
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Figure 4.5: Intersection of edges in grid network

interpreted through the system’s functioning and Communication pace is sensed on

the membership value of the edges both systems pair.

Now let us describe some of the grid network terms:

Let G be an mPFG. The end nodes are connected in a gird network so that new edges

are generated and the membership value of all edges are known by the performance

between them. The effects of the new edges are determined by the relation pi◦B(st) ≤

min{pi ◦ A(s), pi ◦ A(t)} for all st ∈ Ṽ 2, i = 1, 2, . . . ,m. The definition of the 3PF

genus value is shown by a simple example. In Fig. 4.4, the network grid of 6 × 6 is

drawn and the connections between the 3PF vertices are shown. The crosses between

the edges are shown clearly in the figure. 4.5.

The intersections between the 3PFEs is determined as follows::

Therefore, P∗1 =
∑32
i=1 I1Pi

1+
∑32
i=1 I1Pi

= 27.68
1+27.68

= 0.965, P∗2 =
∑32
i=1 I2Pi

1+
∑32
i=1 I2Pi

= 24.27
1+24.27

= 0.960 and

P∗3 =
∑32
i=1 I3Pi

1+
∑32
i=1 I3Pi

= 27.08
1+27.08

= 0.960. The 3PFGG of the grid network is seen in Fig. 4.6.

The Fig. 4.6 shows that the intersection of the 3PFEs in network grid can be reduced

to a torus. When the network grid is fully connected with all the vertices and fulfills

the 3PFG definition, then we get the 3PF toridal graph.
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Table 4.1: Intersection of 3PF edges of the grid network

Figure 4.6: Torus graph

4.5 Summary

mPFGs theory are useful in real life situations such as computer science, image

segmentation, including data mining, clustering, image capturing, networking, etc. To

reduce the crossings between the edges choosing an alternate path so the edges become

efficient and time consumable. Here, embedding of mPFGs which are developed on the

surface of spheres is presented. The weak and strong mPFGG and mPFGG with its

genus value are described. There were discussions about the isomorphism properties

of mPFGG. Furthermore, a relationship has been identified between planarity value

and genus value of the mPFG. The Euler polyhedral equation is also defined with

respect to the mPFGG genus value. In the topological surface, a useful application of

mPFGG is given.


