M.Sc.

2011

4th Semester Examination

PHYSICS

PAPER--PH-2204

Full Marks: 40

Time: 2 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

(Marks: 40)

Answer Q. No. 1 and any three from the rest.

1. Answer any five bits:

 2×5

- (a) Prove that superconducting state is more ordered state than normal state in a superconductor.
- (b) What is meant by quantum of flux in a superconducting ring?
- (c) Write down the fundamental condition for electron spin resorance. How does it help to determine the defect in a solid?
- (d) Find the spectroscopic notation and effective number of Bhormagneton for Cr²⁺ ion having 3d⁴ configuration.

- (e) Describe in details the current voltage characteristics when an insulator is placed between metal and a superconductor.
- (f) Show the schematic spin arrangement in ferrous ferrite and calculate the net magnetic moment per unit cell.
- (g) Explain—What is the origin of energy gap in a supreconductor.
- Describe in details Heitlev-London theory to explain the origin of ferromagnetism in a solid
- 3. Describe in details the electron-Phonon-electron interaction in a superconductor and prove that the interaction is attractive.
- 4. Describe in detail AC Josesphson effect and hence find an expression for tunneling current. Show how the characteristics is changed when electromagnetic wave is incident on a biased junction.
 8+2
- 5. What is meant by coherence-length in a superconductor. Find an expression for coherence length. How do you classify type I and type II superconductor on this basis. Show the sechematic configuration of a SQUID.

2+4+2+2

- 6. (a) What is ferrimagnetism? Using molecular field theory, show that three antiferro-magnetic interactions can result in ferrimagnetism. 1+2
 - (b) Obtain the expressions of Curie temperature and susceptibility of ferrimagnet. 2+2
 - (c) Can you consider an antiferromagnet as a special case of ferrimagnet? Explain. 1+2

APPLIED ELECTRONICS

Group-A

(Marks: 20)

Attempt Q. No. 1 and any one from the rest.

1. Attempt any five bits:

 2×5

- (a) Explain the method of linear interlaced scanning used in a TV system and why it is needed?
- (b) Define the terms (i) Saturation and (ii) Hue.
- (c) Draw the typical V/I characteristic cure of a diac.
- (d) Draw the block diagram of vidicon type of TV camera.
- (e) What are luminance signal and chrominance signal?
- (f) Why green colour difference signal i.e. (G Y) signal is never used for colour signal transmission?
- (g) Why negative modulation is used in the case of TV picture signal modulation?
- (h) What are the roles of shadowmask and phosphor-dot trios in the colour TV.

- 2. (a) Explain how the 'y' signal and colour difference signals are developed from the colour video camera outputs. Draw the necessary block/circuit diagrams
 - (b) Describe with suitable diagrams the gur arrangements and construction details of a delta-gur colour picture tube. Why is it necessary to connect a very high voltage at the final anode of a colour picture tube?
- **3.** (a) What is a Triac? With supporting block diagram discuss a construction of a Triac.
 - (b) What is a digital voltmeter? With supporting block diagram discuss the method of developing a $3\frac{1}{2}$ digit digital voltmeter. What is meant by a resolution by 1 bit? (2+2)+(1+4+1)

Group-B

(Marks: 20)

Attempt Q. No. 1 and any one from the rest.

1. Answer any five questions:

- 5×2
- (a) What is the difference between flat top sampling and natural sampling?
- (b) If a 4 bit PCM system is changed into 8 bit system then what will be the change in signal to noise rational quantum state?

- (c) What are the different flag register in 8086 μp ?
- (d) What is the function of the following pin in 8085 μp ?
 - (i) SID, (ii) ALE, (iii) TRAP and (iv) HOLD
- (e) Give the schematic block diagram of an offset QPSK transmitter.
 - (f) Explain the concept of differential phase shift keying.
- (g) Give the output of A in the following program:

MVI B OA

XRA A

ADD B

MOV C B

ANA C

HLT

- 2. (a) What do you mean by time division multiplexing?

 Find out the bit rate per second in T1 digital system where 24 signals are to be multiplexed.
 - (b) Explain briefly the concept of differential pulse-code modulation.
 - (c) What are the different segment resister in 8086 μ p? What is the role of this register?
 - (d) What are the advantages of 8086 μp over 8085 μp ? 3+3+3+1

- **3.** (a) Name different digital modulation techniques. G the idea frequency shift keying.
 - (b) Write a program to add ten numbers stored in memory location 3000 onwards. Store the result in register.
 - (c) Two 16 bit number stored in 'X' & 'X+1' and 'Y' & 'Y locations. Add two numbers. Store the higher byte B and lower byte in C register.

3+4