M.Sc.

2011

4th Semester Examination

PHYSICS

PAPER-PH-2202

Full Marks: 40

Time: 2 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Group-A

(Marks: 20)

1. Answer any five from the following:

- 2×5
- (a) Discuss the exchange forces between the nucleons.
- (b) On the basis of the extreme single particle shell model, predict the spin and parity of the ground state of ${}_{0}F^{17}$ and ${}_{16}G^{31}$ nuclei.
- (c) What do you mean by single and double magic nuclei, discuss with examples?
- (d) Graphically discuss the compound nuclear reaction mechanism to explain nuclear reactions.
- (e) Discuss the basic principle of the time of flight method in neutron spectroscopy.

- (f) State and discuss the IPM and S.I.M. with example
- (g) What do you understand by the level width (Γ) a level Separation (D) between the levels of Continuum in nuclear reactions?
- (h) What are the sources of neutrons?

2. Answer any one bit:

10>

- (a) Write the wave equation for the ground state of t deuteron and solve it to obtain an expressi connection the depth (U₀) and range (r₀) of nucle potential with the binding energy of deuteron (B)
- (b) What are thermal neutrons? Calculate the me probable velocity and most probable energy of neutro at room temperature (20°C)

How can you establish that neutrons at low ener behave like a gas. 2+5+2-

Group-B

(Marks: 20)

Answer Q. No. 1 and any one from the rest.

1. Answer any four of the following:

4×2

- (a) What do you mean by 'local' gauge invariance a 'global' gauge invariance?
- (b) Assuming that Wick's theorem holds for product o fields, show that it holds also for the product of (n + fields

- (c) State and discuss Wick's expansion theorem.
- (d) Investigate whether or not η exists for

$$\Lambda (\partial) = \gamma \partial + m \frac{1 + \gamma \partial}{2}$$

- (e) Show that appropriate Feynman diagrams can be drawn to describe the second order S-matrix element for the Compton scattering.
- (f) Justify why a waveform interpretation of the Klein-Gordon equation is not possible.
- 2. (a) Show that

$$\left\{\psi(t,\vec{x}),\psi^+\big(t,\vec{y}\big)\right\}=\delta^3\big(\vec{x}-\vec{y}\big)$$

for Dirac field.

- (b) Explain time-order product and normal order product.
- (c) If $\hat{N} = \int d^3p \ a^+(p)a(p)$ be the number operator in Fock space, then show that

$$\left[\hat{N}, a^+(k)\right] = a^+(k)$$

$$\left[\hat{N}, a(k)\right] = -a(k)$$

4+2+2+2

(a) Consider the Lagrangian of a real scalar field \$\phi\$

$$L = \frac{1}{2} (\partial_{\mu} \phi)^{2} - V(\phi)$$

where $V(\phi) = \frac{1}{2}\mu^2\phi^2 + \frac{\lambda}{4}\phi^4$ with $\lambda > 0$.

- (i) What is the symmetry under which the above Lagrangian invariant?
- (ii) Sketch the potential $V(\phi)$ for $\mu^2 < 0$ and $\mu^2 > 0$
- (iii) Consider the quantum fluctuation $\eta(x)$ about the minimum for $\mu^2 < 0$. How is the above Lagrangian modified under this transformation

 $\phi(x) = v + \eta(x)$; v is the minimum for $\mu^2 < 0$ case. can you conclude from the Lagrangian? Does this Lagrangian possess the above symmetry in (i)? 1+2+2

For a Higg's boson multiplet $L_{\varphi}=\left(D^{\mu}\varphi\right)^{+}\!\left(D_{\mu}\varphi\right)-\mu^{2}\varphi^{+}\varphi$ $-\lambda(\phi^+\phi)^2$

where $D_{\mu} = \partial_{\mu} + igT_{a}^{\{n\}}W_{\mu}^{a} + igYB_{\mu}$

with $T_a^{(n)}$ denote generators of SU(2) and $\phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix}$ for charged field and neutral field.

Prove that mass of W-boson is $\frac{1}{2}$ gv and that for Z^0 -boson is $\frac{v}{2}\sqrt{g^2+g'^2}$. where g, g' are coupling constants.

2 + 3