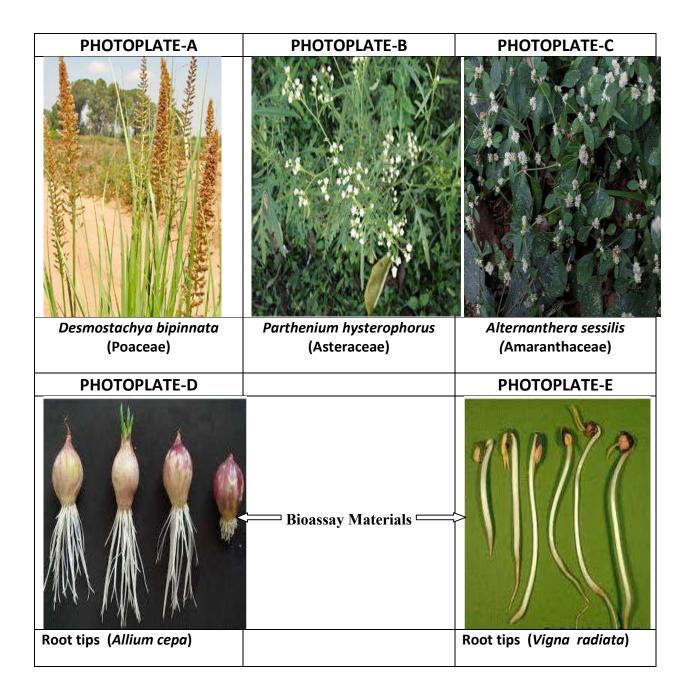
An Investigation On Allelopathic Potential Of Three Selected Weeds Growing In West Bengal

177


Determination of Relative Allelopathic Vigour of Three Weeds of West Bengal by Cytological Approach.

INTRODUCTION:

An investigation was carried out for the determination and evaluation of the allelopathic potential of the three weeds already mentioned in chapters-1 and 2, designing an experiment with cytological approach . Leaf extracts and leachates in the same concentrations as taken and already discussed in chapter-1 and 2 from the three weeds are tested on *Allium cepa* and *Vigna radiata* root tips. Cytological evaluation of allelopathic potential is done by microscopic study of allelochemical induced alterations of cytological characters with particular reference to various anomalies during cell-division and chromosomal structural abnormalities like condensation, pole deviation, anaphase bridge, clumping, bi-nucleation ,depurination, fragmentation, stickiness, multinucleate cells, late separation with micronuclei formation etc. Comparison and statistical analysis of Chromosomal Abnormality Index help reveal the hierarchial order of allelopathic vigour. The weeds induce chromosomal abnormalities i.e. high- Chromosomal Abnormality Index (C.A.I) in both *Allium cepa* and *Vigna radiata root tips*.

179

Materials and Methods:

A)Preparation of Root tip (Allium cepa):

1) About 40 fresh and viable bulbs of *Allium cepa* (L) were taken and the dried roots were cut from their base of stem disc with a sharp blade and washed thoroughly and placed at 0.5 inch deep wet sand in a clay pot and kept in a well ventilated place at room temperature $(30 \pm 2^{\circ}C)$.

2) After 3 days, at about 1 cm long rooted condition *Allium* blubs were pulled out carefully from the sand and thoroughly washed.

3) Test tubes (10 ml) were filled with leaf extracts of *Desmostachya bipinnata*, *Parthenium hysterophorus*, *Alternanthera sessilis* of different concentrations as shown in Table-32, and the bulbs were placed on the test tube in such a way that the roots only immersed within the solution and were kept in room temperature for 18 hrs.

4) The bulbs were then pulled out from the test tubes and rinsed thoroughly with distilled water. The root tips were cut at 2-3 mm of length and fixed overnight in acetic acid and ethanol mixture (1:3).

5) Then root tips were kept for 15 min in 45% acetic acid (For storing root tips were transferred to 70% ethanol and kept in a refrigerator).

6) The material was then transferred to a mixture of 2% aceto-orcein and 1(N) HCl and warmed gently for5 seconds and kept for 45 minutes in staining mixture.

7) Clean, dry, grease free slides were taken and the tip portion (deep coloured portion of the roots were placed in a drop of 45% acetic acid, covered with a cover glass and was tapped with a match-stick to scatter the cells uniformly.

8) The squash was taken in the fold of a blotting paper to give uniform pressure to spread the material. Excess fluid was blotted out, sealed with paraffin and the slide was finally observed under low and high power (40X and 100X).objective of binocular compound microscope.

B) Preparation of Root tip (Vigna radiata):

1) Fully viable green gram seeds were taken and immersed in a beaker half filled with double distilled water and kept in a well ventilated place at room temperature.

2) After sprouting of the plumule, seeds were transferred to moist sand and saw dust mixture (1:1) and kept at room temperature $(30 \pm 2^{\circ}C)$.

3) After 2 days primary roots 1.0 mm to 1.5 mm long were pulled out from the sand saw dust mixture carefully and washed thoroughly with distilled water . Test tubes (10 ml) were then filled with leaf extract and leachates of *Desmostachya bipinnata, Parthenium hysterophorus, Alternanthera sessilis* of different concentrations as shown in Table 33 , and the bulbs were placed on the test tube in such a way that the roots only got immersed within the solution and kept in room temperature for 18 hrs.

4) The set ups were kept in a well ventilated and illuminated place at room temperature $(30 \pm 2^{\circ}C)$ for 18 h. The roots were then pulled out from the sand solution mixture and thoroughly rinsed with distilled water.

5) Root tips were cut at 2-3 mm of length and fixed overnight in acetic acid and ethanol mixture

(1:3) and stored in 70% alcohol for subsequent use.

6) Then root tip squashes were made by the haematoxylin technique of Marimuthu and Subramanium (1960) and slightly modified in few steps to make it suitable for cytological investigation.

7) Root tips were hydrolyzed in 0.1 N HCl for 25 min at 70°C and then thoroughly washed with distilled water. The roots were then treated with 4% iron alum (Ferric ammonium sulphate) for 10 min and rinsed thoroughly with double distilled water according to the technique of Wigglesworth (1952).

8) The roots were then transferred to 0.5% haematoxylin stain and kept for 3 h and subsequently washed with water. To soften the tissue , roots were treated with 45% acetic acid for 5 seconds according to the technique of Wittmann (1962).

9) Clean dry and grease free slides were taken and root tips were squashed with the help of cover slip and tapped with match-stick to spread the cells, sealed with paraffin and observed under low and high power objective of binocular compound microscope.

<u>Results:</u>

The Abnormality Index (%) is calculated by the following formula:

Abnormality Index =Total number of abnormal cells × 100% Total number of dividing cells

(Conc. In weight/volume = w/v, LE = Leaf Extract, LL= Leaf Leachate.) (D= Desmostachya bipinnata; P= Parthenium hysterophorus; A= Alternanthera sessilis.)

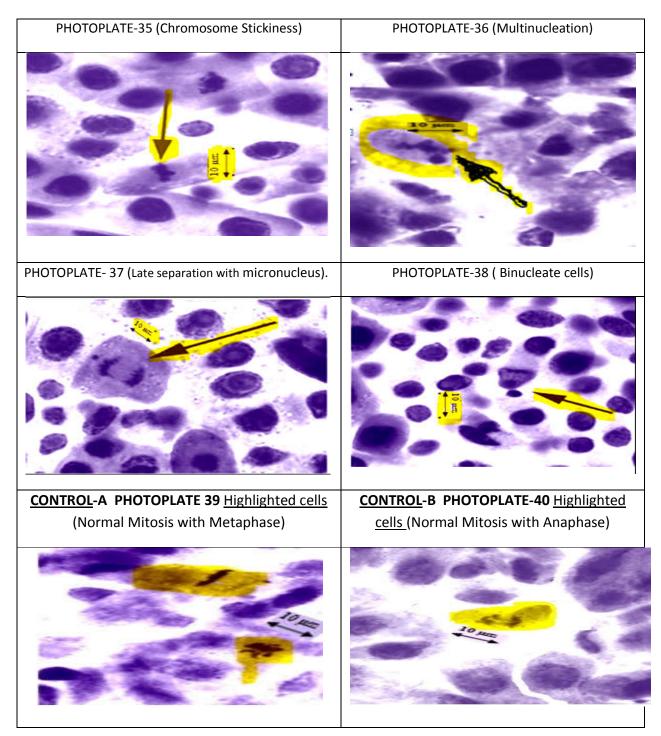
<u>Table-32:</u> Effect of seed pretreatment with leaf extracts and leaf leachates of *Desmostachya* bipinnata, Parthenium hysterophorus, Alternanthera sessilis on chromosomal aberrations of Allium cepa root tips.

Treatments in concentrations	Total dividing cells	Total cells counted	Condensation	Asynchronous division	Pole deviation	Anaphase bridge	Clumping	Binucleate cells	Depurination	Stickiness	Fragmentation	Micronuclei	Total abnormal cells counted	Chromosomal Abnormality Index (%)
Control	355	2976	0	0	0	0	0	0	0	0	0	0	0	0
DLE(1:05)	195	2850	3	2	1	3	2	2	2	2	2	2	21	10.76
DLE(1:10)	193	2917	2	3	1	4	3	1	1	1	1	1	18	9.32
DLE(1:20)	203	3096	2	1	0	1	2	3	2	0	2	1	14	6.89
	202	2644	2		0			2		2		2	1.4	6.02
PLE(1:05) PLE(1:10)	202	2644	2	1	0	2	1	2	1	2	1	2	14	6.93
PLE(1:10) PLE(1:20)	205 220	2838 2844	2	1 0	1	2 2	2	2	2	0	1	1	14 13	6.83 5.90
FLL(1.20)	220	2044	1	0	1	2	1	2	2	2	1	1	15	5.90
ALE(1:05)	163	2152	1	1	0	1	1	2	1	1	1	1	10	6.13
ALE(1:10)	149	1964	1	1	1	1	1	1	0	0	1	1	8	5.36
ALE(1:20)	112	1640	1	0	1	0	1	1	0	0	1	0	5	4.46
LSD (p≤0.05)														3.39
DLL(1:05)	205	2868	2	1	0	3	2	2	2	2	2	2	18	8.78
DLL(1:10)	192	2851	2	2	0	3	2	1	2	0	2	2	16	8.33
DLL(1:20)	195	2960	1	2	0	1	2	2	3	0	1	1	13	6.67
		00-0												
PLL(1:05)	216	2853	1	1	0	3	1	2	1	2	1	2	14	6.48
PLL(1:10)	207	2630	1	1	0	2	1	2	1	1	1	2	12	5.79
PLL(1:20)	210	2780	1	0	0	3	2	1	2	0	1	2	12	5.71
ALL(1:05)	150	2238	1	1	0	1	1	2	1	1	0	1	9	6.00
ALL(1:10)	153	1973	1	1	0	1	1	1	1	1	1	0	8	5.22
ALL(1:20)	120	1794	0	0	0	0	1	1	0	1	1	0	4	4.00
LSD (p≤0.05)														0.48

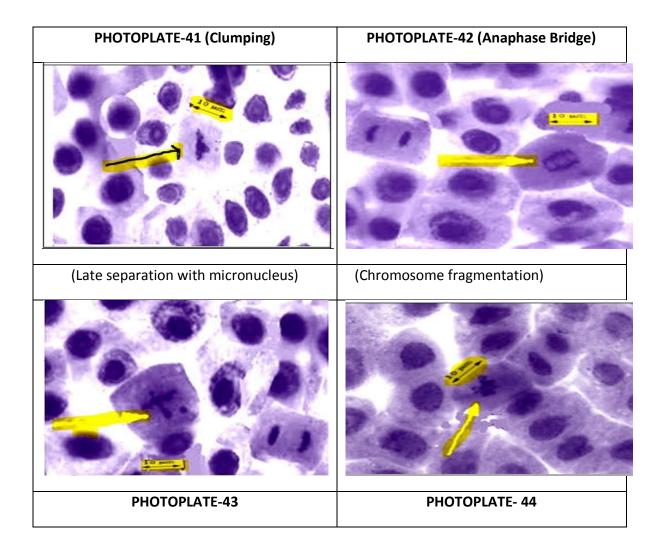
<u>Table-33:</u> Effect of seed pretreatment with leaf extracts and leaf leachates of *Desmostachya* bipinnata, Parthenium hysterophorus, Alternanthera sessilis on chromosomal aberrations of Vigna radiata root tips.

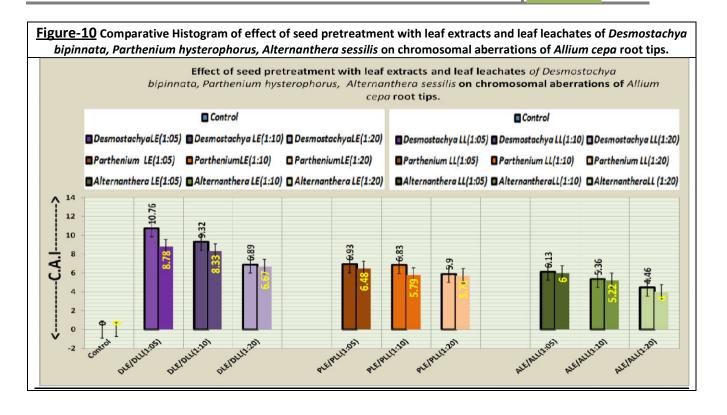
Treatments in concentrations	Total dividing cells	Total cells counted	Late separation	Anaphase bridge	Clumping	Binucleate cells	Depurination	Stickiness	Multinucleate cells	Micronuclei	Total abnormal cells counted	Chromosomal Abnormality index (%)
Control	355	2976	0	0	0	0	0	0	0	0	0	0
DLE(1:05)	196	2863	3	6	4	3	3	2	2	2	25	12.75
DLE(1:10)	191	2917	3	4	5	3	3	1	1	2	22	11.51
DLE(1:20)	192	3338	2	3	4	2	2	2	1	1	17	8.85
PLE(1:05)	207	2798	2	4	3	3	3	1	3	2	21	10.14
PLE(1:10)	195	2815	3	4	3	2	2	1	2	2	19	9.74
PLE(1:20)	178	2963	2	3	2	3	1	1	2	1	15	8.42
ALE(1:05)	207	2798	2	5	4	3	3	1	3	2	23	9.87
ALE(1:10)	195	2815	3	4	3	2	2	1	2	2	19	9.04
ALE(1:20)	178	2936	2	3	2	3	1	1	2	1	15	7.65
LSD (p≤0.05)												0.77
DLL(1:05)	205	2756	3	5	4	3	3	2	3	3	26	12.68
DLL(1:10)	190	2852	3	4	4	1	4	1	1	2	20	10.52
DLL(1:20)	197	2860	2	3	3	2	1	2	2	2	17	8.62
			_	-	•		_	_		_		
PLL(1:05)	202	2449	3	4	2	2	1	2	2	2	18	8.91
PLL(1:10)	205	2984	2	5	3	1	3	1	0	1	16	7.80
PLL(1:20)	207	2850	1	4	2	1	1	1	2	1	13	6.28
ALL(1:05)	309	2794	4	6	3	3	3	2	3	2	26	8.41
ALL(1:10)	287	2811	3	5	4	1	4	1	1	2	21	7.31
ALL(1:20)	309	2773	2	3	3	2	1	2	2	2	17	5.50
LSD (p≤0.05)												0.49

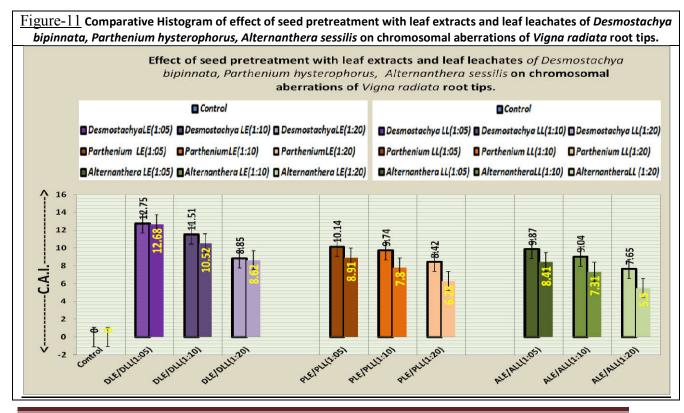
Photographs (X 100) showing the Chromosomal Aberrations as shown (PHOTOPLATES 25-32) in treated samples & normal chromosomal behavior in CONTROL -1 and CONTROL-2 sample (PHOTOPLATE 29 & 30)-of Allium cepa root tip cells.


	10 gam
PHOTOPLATE-25 (X 100) (Chromosome Stickiness)	PHOTOPLATE- 26 (Depurination) (X 100)
PHOTOPLATE-27 (Micronucleus). (X 100)	PHOTOPLATE-28 (Binucleate cells) (X 100)
CONTROL-1 (X 40) Normal Mitosis with Metaphase)	CONTROL-2 (X 40) (Normal Mitosis with
PHOTOPLATE-29	Anaphase) PHOTOPLATE-30

M.Haque,2019


186


PHOTOPLATE-31	PHOTOPLATE-32
Highlighted cells in yellow:	Highlighted cells in yellow:
(Chromosomal Clumping). (X 100)	(Anaphase Bridge). (X 100)
PHOTOPLATE-33	PHOTOPLATE-34
(X 40) (Normal Mitosis with Prophase)	(Chromosome fragmentation). (X 100)


Photographs (X 100) showing the Chromosomal Aberrations as shown (PHOTOPLATES 33 -44) in treated samples & normal chromosomal behavior in CONTROL (A & B) (PHOTOPLATE 39 & 40)- of Vigna radiata root tip cells.

M.Haque, 2019

M.Haque, 2019

Statistical analysis: (Table 32)

Analysis of Variance

Groups: Control, *Desmostachya* extract, *Parthenium extract, Alternanthera extract, Desmostachya* leachates, *Parthenium* leachates, *Alternanthera* leachates

ANOVA									
Chromosomal Abnormality Index (%)									
	Sum of	Sum of df Mean F Sig.							
	Squares Square								
Between	75.067	6	12.511	11.482	.000				
Groups	73.007	0	12.311	11.402	.000				
Within Groups	13.075	12	1.090						
Total	88.142	18							

		ANOVA				
		Sum of	df	Mean Square	F	Sig.
		Squares				
Total dividing cells	Between Groups	44183.193	6	7363.865	36.345	.000
	Within Groups	2431.333	12	202.611		
	Total	46614.526	18			
	Between Groups	3391018.667	6	565169.778	20.873	.000
Total cells counted	Within Groups	324925.333	12	27077.111		
	Total	3715944.000	18			
	Between Groups	7.439	6	1.240	5.579	.006
Condensation	Within Groups	2.667	12	.222		
	Total	10.105	18			
	Between Groups	6.667	6	1.111	2.500	.083
Asynchronous division	Within Groups	5.333	12	.444		
	Total	12.000	18			

An Investigation On Allelopathic Potential Of Three Selected Weeds Growing In West Bengal

				I	-,	
511	Between Groups	2.105	6	.351	2.105	.128
Pole deviation	Within Groups	2.000	12	.167		
	Total	4.105	18			
A	Between Groups	16.351	6	2.725	3.504	.031
Anaphase bridge	Within Groups	9.333	12	.778		
	Total	25.684	18			
cı .	Between Groups	6.632	6	1.105	6.632	.003
Clumping	Within Groups	2.000	12	.167		
	Total	8.632	18			
	Between Groups	3.965	6	.661	1.699	.204
Binucleate cells	Within Groups	4.667	12	.389		
	Total	8.632	18			
	Between Groups	8.772	6	1.462	5.263	.007
Depurination	Within Groups	3.333	12	.278		
	Total	12.105	18			
Q.(: 1.)	Between Groups	2.526	6	.421	.505	.793
Stickiness	Within Groups	10.000	12	.833		
	Total	12.526	18			
Encourtetion	Between Groups	3.789	6	.632	3.789	.024
Fragmentation	Within Groups	2.000	12	.167		
	Total	5.789	18			
	Between Groups	7.193	6	1.199	4.316	.015
Micronuclei	Within Groups	3.333	12	.278		
	Total	10.526	18			
Total abnormal cells	Between Groups	402.526	6	67.088	13.880	.000
counted	Within Groups	58.000	12	4.833		
	Total	460.526	18			

Linear Regression Analysis:

	ANOVA ^a									
Model		Sum of	df	Mean	F	Sig.				
		Squares		Square						
	Regression	91.570	14	6.541	48.867	.001 ^b				
1	Residual	.535	4	.134						
	Total	92.105	18							
	a. Depende	ent Variable: Ch	iromosoma	al Abnormality	/ Index (%)				
b	. Predictors: (Constant), Gro	ups, Binuc	cleate cells, An	aphase bri	dge,				
	Stickiness, Po	ole deviation, F	ragmentati	ion, Asynchron	nous divisi	on,				
Dep	Depurination, Micronuclei, Total dividing cells, Condensation, Clumping,									
	Total	cells counted,	Total abno	ormal cells cou	unted					

		Coef	ficients ^a			
	Model	Unstanc	lardized	Standardized	t	Sig.
		Coeffi	icients	Coefficients		
		В	Std. Error	Beta		
	(Constant)	3.022	2.048		1.476	.214
	Total dividing cells	.006	.011	.144	.601	.580
	Total cells counted	002	.001	366	-1.298	.264
	Condensation	166	.599	055	277	.796
	Asynchronous division	371	.610	134	609	.576
	Pole deviation	512	.719	108	713	.515
	Anaphase bridge	-1.218	.576	643	-2.113	.102
1	Clumping	.400	.981	.122	.408	.704
1	Binucleate cells	711	.572	218	-1.244	.281
	Depurination	384	.638	139	602	.579
	Stickiness	294	.800	108	367	.732
	Fragmentation	849	.735	213	-1.154	.313
	Micronuclei	134	.762	045	175	.869
	Total abnormal cells counted	.998	.627	2.231	1.590	.187
	Groups	.047	.135	.039	.350	.744
	a. Dependent V	ariable: Chror	nosomal Abn	ormality Index ((%)	

Statistical analysis: (Table 33)

Analysis of Variance

Groups: Control, *Desmostachya* extract, *Parthenium extract, Alternanthera extract, Desmostachya* leachates, *Parthenium* leachates, *Alternanthera* leachates

ANOVA									
Chromosomal Abnormality index (%)									
	Sum of	Sum of df Mean F Sig.							
	Squares Square								
Between	115.733	6	19.289	8.227	001				
Groups	113.733	0	19.289	0.227	.001				
Within Groups	28.135	12	2.345						
Total	143.869	18							

		ANOVA				
		Sum of Squares	df	Mean Square	F	Sig.
Total dividing cells	Between Groups	46900.772	6	7816.795	71.531	.000
	Within Groups	1311.333	12	109.278		
	Total	48212.105	18			
	Between Groups	157445.298	6	26240.883	.967	.486
Total cells counted	Within Groups	325475.333	12	27122.944		
	Total	482920.632	18			
T etc. en en etc. e	Between Groups	7.754	6	1.292	2.326	.101
Late separation	Within Groups	6.667	12	.556		
	Total	14.421	18			
	Between Groups	18.281	6	3.047	2.493	.084
Anaphase bridge	Within Groups	14.667	12	1.222		
	Total	32.947	18			

An Investigation On Allelopathic Potential Of Three Selected Weeds Growing In West Bengal

194

	_					
	Between Groups	17.614	6	2.936	6.605	.003
Clumping	Within Groups	5.333	12	.444		
	Total	22.947	18			
	Between Groups	9.123	6	1.520	2.737	.065
Binucleate cells	Within Groups	6.667	12	.556		
	Total	15.789	18			
	Between Groups	7.860	6	1.310	.943	.500
Depurination	Within Groups	16.667	12	1.389		
	Total	24.526	18			
	Between Groups	3.439	6	.573	2.579	.077
Stickiness	Within Groups	2.667	12	.222		
	Total	6.105	18			
Multimuslasta colla	Between Groups	6.491	6	1.082	1.498	.259
Multinucleate cells	Within Groups	8.667	12	.722		
	Total	15.158	18			
	Between Groups	4.772	6	.795	2.863	.057
Micronuclei	Within Groups	3.333	12	.278		
	Total	8.105	18			
Total abnormal cells	Between Groups	433.965	6	72.327	4.858	.010
counted	Within Groups	178.667	12	14.889		
	Total	612.632	18			

ANOVA ^a							
Model		Sum of	df	Mean	F	Sig.	
		Squares		Square			
	Regression	151.848	11	13.804	52.611	.000 ^b	
1	Residual	1.837	7	.262			
	Total	153.684	18				
a. Dependent Variable: Chromosomal Abnormality index (%)							
b. Predictors: (Constant), Groups, Clumping, Multinucleate cells, Total dividing							
cells, Stickiness, Total cells counted, Late separation, Anaphase bridge,							
Binucleate cells, Depurination, Micronuclei							

Linear Regression Analysis:

Coefficients ^a							
Model		Unstandardized		Standardized	t	Sig.	
		Coefficients		Coefficients			
		В	Std. Error	d. Error Beta			
	(Constant)	10.495	5.514		1.903	.099	
	Total dividing cells	024	.003	431	-8.323	.000	
1	Total cells counted	001	.002	030	296	.776	
	Late separation	120	.292	037	410	.694	
	Anaphase bridge	.303	.246	.140	1.233	.258	
	Clumping	134	.380	052	352	.735	
	Binucleate cells	.581	.312	.186	1.862	.105	
	Depurination	.645	.316	.258	2.046	.080	
	Stickiness	.991	.394	.197	2.513	.040	
	Multinucleate cells	560	.359	176	-1.559	.163	
	Micronuclei	1.956	.775	.449	2.523	.040	
	Groups	362	.101	234	-3.568	.009	
a. Dependent Variable: Chromosomal Abnormality index (%)							

Excluded Variables ^a							
Model		Beta In	t	Sig.	Partial	Collinearity	
					Correlation	Statistics	
						Tolerance	
1	Total abnormal cells counted	b				.000	
a. Dependent Variable: Chromosomal Abnormality index (%)							
b. Predictors in the Model: (Constant), Groups, Clumping, Multinucleate cells, Total							
dividing cells, Stickiness, Total cells counted, Late separation, Anaphase bridge, Binucleate							
cells, Depurination, Micronuclei							

DISCUSSION:

Effect on chromosomal aberrations of Allium cepa and Vigna radiata root tips:

(Table 32 & 33):

Leaf extracts and leachates of *Desmostachya bipinnata*, *Parthenium hysterophorus* and *Alternanthera sessilis* induced chromosomal abnormalities in *Allium cepa* root tips. They exhibited many chromosomal abnormalities such as formation of condensation, asynchronous division, pole deviation, anaphase bridge, clumping, bi-nucleated cells, depurination, fragmentation, micronuclei (Table 32) and late separation, anaphase bridge, clumping, binucleate cells, depurination, stickiness, multinucleate cells, late separation with micronucleus (Table 33).

Control samples in both the cases showed the normal mitotic division whereas the treated samples exhibited various abnormalities. It was shown that the value of aberration percent C.A.I.% were higher in the treated samples of *Desmostachya sp* than *Parthenium sp*. followed by *Alternanthera sp* with increasing order of concentration of extracts i.e.(1:5>1:10>1:20) . C.A.I. % induced by the leaf extracts and leachates of each of the three plants may be attributed to the effect of allelochemicals like quercetin, quercitrin, kaempferol common to the three plants which can inhibit topoisomerase I and II enzyme activity and interfere with the replication and transcription process and inhibit the process of the religation of DNA, thereby inhibiting receptor plant's mitosis, interfere with normal plant cell's DNA repair and destroy the structure and function of plant cell spindle fibers, leading to- chromosomal aberrations, micronuclei, chromosomal fragmentation and chromosome anaphasic bridges.

The results show that the allelochemicals of *Desmostachya are* maximum damaging as compared to *Parthenium* and *Alternanthera*.

.

. The results of this study show that, *Desmostachya bipinnata* has strong allelopathic effects by changing the plant cell membrane permeability and function, affecting the process of plant photosynthesis, inhibition of cell mitosis, interference with the normal process of repair of DNA