2009

PHYSICS

Full Marks: 40

Time: 2 hours

The figures in the right-hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

Illustrate the answers wherever necessary

PAPER—PH-1203 A

[Marks: 20]

1. Answer any five from the following:

 2×5

(a) What are the advantages of r.f. probe method over the double probe method?

- (b) Diagrammatically explain toroidal pinch-effect in plasma.
- (c) What are the major MHD instabilities in a linear pinch?
- (d) A microwave beam of frequency 6 × 10⁴ MHz
 is found to be just reflected from a plasma.
 Calculate the electron density.
- (e) State and discuss Lawson criterion.
- (f) Explain recombination radiation loss in a plasma.
- (g) Explain the idea behind generation of oscillation in plasma.
- (h) Schematically draw the block of the Hypothetical controlled fusion reactor.

2. Answer any one bit:

- (a) What are the plasma parameter? Discuss the method of determining the electron temperature by spectroscopic technique with photomultiplier tube arrangement. 2+8
- (b) Name the processes of radiation loss from plasma. Find an expression for the energy radiated per unit volume due to bremsstrahlung loss in plasma.

 2+8

(Electrodynamics)

PAPER—PH-1203B

[Marks: 20]

1. Answer any five questions:

 2×5

(a) If alternating field $E = E_0 \cos \omega t$ is applied to a conductor $\lambda(\sigma = 10^7 \text{mho/m})$, show that the displacement current is negligible as compared to conduction current at any frequency lower than optical frequencies.

$$[\epsilon_0 = 9 \times 10^{-12} \, \text{F/m}].$$

- (b) What is Lorentz gauge? What are its advantages?
- (c) In a source free region if

$$\vec{A} = \hat{\imath} x^4 + \hat{k} z^2 t^2$$

compute field vectors \overrightarrow{E} and \overrightarrow{B} .

- (d) Write the form of electromagnetic potentials which exhibit the dependence of the potentials on the velocity of the charged particle.
- (e) Show that

$$\frac{d\bar{A}}{dt} = -\frac{1}{2}(\vec{v} \times \vec{B}).$$

(f) Why radio communication is not possible under the sea?

- (g) Show that the frequency of the electromagnetic wave remains unchanged by reflection and refraction.
- (h) Kolkata Radiostation radiates a power of 0.5 MW at about 90 MHz from its antenna. Obtain a rough estimate of the strength of its electric field at V.U. Midnapore. The distance between Radiostation and V.U. is approximately 80 km.

2. Answer any one question:

 10×1

- (a) (i) Find the transformation equations for charge density (Q) and current density (\overrightarrow{J}).
 - (ii) Treating the electric dipole to be equivalent to an accelerated charge, calculate the dipole moment amplitude (p_0) in terms of charge (q) and acceleration (a). 5+5

(b) Obtain the expression of the total power radiated by an accelerated charge at high velocity, when the velocity and acceleration is colinear. What is Bremsstrahlung radiation?8 + 2