M.Sc 1st Semester Examination, 2009

PHYSICS

(Methods of Mathematical Physics)

The figures in the right-hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

Illustrate the answers wherever necessary

PAPER---PH-1101 (A)

[Marks:20]

Time: 1 hour

Answer Q.No.1 and any one from the rest

1. Answer any five bits:

2 x 5

(a) Prove that a Hermitian operator is represented by a Hermitian matrix.

(b) Find orthogonal set from non-orthogonal set $\{1, x, x^2\}$ by Gram-Schmidt process.

(c) Find the inverse of the matrix

$$\left(\begin{array}{ccc}
\cos\theta & \sin\theta \\
-\sin\theta & \cos\theta
\end{array}\right).$$

(d) Evaluate

$$\int_{0}^{\infty} \sqrt{x} e^{-x^3} dx.$$

- (e) Prove that the real and the imaginary parts of a complex analytic function are harmonic functions.
- (f) Transform the following equation into an equivalent self-adjoint form:

$$x \frac{d^2y}{dx^2} + (1-x) \frac{dy}{dx} + xy = 0.$$

(g) Locate and classify the singularities of the function

$$f(z) = \exp\left(\frac{1}{z^2}\right).$$

(h) Consider the equation

$$Ly = 0$$
, where $L = \frac{d^2}{dx^2} + q(x)$

If y_1 and y_2 are two linearly independent solutions of this equation, then show that their Wrouskian is a constant.

2. (a) Express

$$f(x) = x^3 + 2x^2 - x - 3$$

in terms of Legendre polynomials in the internal -1 < x < 1.

(b) Prove that

$$2x H_n(x) = 2n H_{n-1}(x) + H_{n+1}(x)$$

using generating function of Hermite polynomial.

(c) Find the value of

$$\int_{-1}^{+1} (1+x) P_n(x) dn \text{ for } n > 1.$$

3 + 4 + 3

- 3. (a) Prove that if two matrices commute, then they must have the same set of eigenvectors. Assume that the eigenvalues are non-degenerate.
 - (b) If f(x) = 0 for $-1 \le x < 0$ and f(x) = x for $0 \le x \le 1$, then obtain first three terms in the expansion of f(x) in terms of Legendre polynomials.
 - (c) Evaluate the following integral using the residue theorem:

$$\int_{0}^{\infty} \frac{dx}{x^2 + 4}$$

Draw the contour and show the singular points clearly. 3 + 3 + 4

PAPER-PH-1101 (B)

[Marks:20]

Time: 1 hour

Answer Q.No.1 and any one from the rest

1. Answer any five bits:

2 x 5

- (a) With the help of Greek alphabet how can you express the 4th state of matter?
- (b) State the process by which plasma occur in nature.
- (c) Draw the schematic circuit of Inductively coupled toroidal discharge for the study of the breakdown process in air.
- (d) Show graphically, in classical view point, the phase space and volume element under the concepts of plasma kinetic theory.
- (e) Write mathematical expression of electron temperature (T_e) in terms of electric field and pressure in plasma, and work out its physical significance.

- (f) Discuss the distribution function in phase space.
- (g) Discuss, with graphical presentation of current waveform with time for the operation of laboratory built exploding wire discharge method.
- (h) Depending upon the degree of ionization name the catagories into which plasma can be classified.
- Define thermal ionization. Deduce Saha's ionization formula and point out its applications.
- 3. What do you mean by ambipolar diffusion in plasma? Deduce an expression for ambipolar diffusion coefficient. Show that when $T_e \approx T_i$, the ambipolar diffusion coefficient is approximately twice the ion diffusion coefficient. 3+5+2