M.Sc.

2009

4th Semester Examination

PHYSICS

PAPER-PH-2202

Full Marks: 40

Time: 2 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Group-A

(Marks : 20)

1. Answer any five from the following:

2×5

- (a) Discuss the exchange forces between the nucleons with examples.
- (b) Establish the target capture $_{13}Al^{27}(d,p)_{13}Al^{28}$ nuclear reaction for $E_a > 50$ MeV.
- (c) Give few examples of the Independent Particle models.
- (d) What do you mean by the reaction channels for nuclear reactions? Express with example.

- (e) What are semi-magic and double magic nuclei?
- (f) Using single-particle shell model find the spin-parity values of the following (any two) ground state nuclides:

 $_{29}$ Cu⁶³, $_{6}$ C¹² and $_{8}$ O¹⁷.

- (g) Present graphically the types of neutrons with energy.
- (h) Give the range of life-time and nucleon traversetime on the formation and disintegration of the compound nucleus.

2. Answer any one bit :

10×1

- (a) What do you mean neutron optics? Derive the relation between refractive index (μ) and scattering length (a) of a material with nuclei per unit volume(N) due to neutron for wave length 'λ',
- (b) What do you understand by the level width (Γ) and level separation (D) between the levels of a continuum in nuclear reactions?

Discuss the basic ideas of the continuum theory of nuclear reactions. 2+8

Group-B

(Marks: 20)

1. Answer any five bits:

 2×5

- (a) Prove that the time reversal operator is anti-unitary.
- (b) State the usefulness of normal ordering of operators.
- (c) Define gauge co-variant derivative why it was introduced?
- (d) $\hat{H}_{int}^{e.m} = e \overline{\psi} v_{\mu} \psi A_{\mu}$.
- (e) How does standard model predict neutral current? Evaluate $\hat{C}\hat{H}_{int}^{e.m.}\hat{C}^{-1}$.
- (f) $L = \frac{1}{2} \partial^{\mu} \phi \partial_{\mu} \phi \frac{1}{2} m^2 \phi^2$. Prove that $m^2 \phi + \Box \phi = 0$.
- (g) Discuss Higg's mechanism.
- (h) What do you mean by non-abelian symmetry?
- 2. Answer any one bit :
 - (i) (a) For the process $e^-\mu^- \rightarrow e^-\mu^-$, write down the scattering amplitude with necessary Feynman diagram.

(b) Prove that

$$T_{r}[(p_{2} + m) \gamma^{\mu}(p_{1} + m) \gamma^{\lambda}]$$

$$= 4 \left[p_{2}^{\mu} p_{1}^{\lambda} + p_{2}^{\lambda} p_{1}^{\mu} + m^{2} g^{\mu \lambda} - p_{1} \cdot p_{2} g^{\mu \lambda} \right]$$
5

(ii) (a) Prove that the invariance of the scalar field Lagrangian under space-time translation leads to the conserved energy-momentum tensor

$$T_{\nu}^{\mu} = \frac{\partial L}{\partial(\partial_{\mu}\phi)} - L \, \delta_{\nu}^{\mu}.$$

(b) What is CPT theorem? Write the consequence of CPT theorem. Why parity is not conserved in weak interaction?