
Chapter 7

Stage structure predator model
with two preys∗

Prey-predator model with stage structure of predator is considered in this

chapter. Two types of prey are considered for immature and mature predator

respectively in the formulated model. Consumption rate of prey by immature

predator is described by Holling type II functional response whereas for mature

predator is taken as Holling type III functional response. Logistic growth rates

are chosen for both preys in this chapter. As this is a stage structure model,

so immature predator transforms to mature predator after certain stage with

a constant rate which is treated as bifurcation parameter. Different mortality

rates are taken for both predators. Local and global stabilities are discussed

to validity of the proposed model. Finally, a numerical simulation has been

included to verify the analytic results and the system is analyzed through

graphical illustrations. Conclusions of the findings and outlook of the chapter

are depicted at last.

7.1 Introduction
Ecology is the scientific analysis with the study of interactions among organ-

isms and their environments. Amount of biomass and number of population of

particular organisms, as well as co-operation and competition between them,

∗A part of this chapter has been communicated to the International Journal
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Chapter 7: Stage structure predator model with two preys

within and among ecosystems are the main topics of interest by many ecolo-

gists. The relationship between two organisms, where one organism consumes

to other is called prey-predator relationship. A predator is an organism that

eats another organism. The prey is an organism which the predator eats.

There are different types of predator-prey models in different environments.

Depending on time in the species life cycle, feeding capacities of species are

changed. Sometimes, resources of food are also different on different stages of

species life cycle. For this reason, prey of predator is also changed based on

life cycle of predator. In different stages of life cycle of an organism there are

different food habits. Many researchers described about stage structure but

they did not change feeding habit of predators. In ecology, change of feeding

habit in different stages in life cycle of species is a common phenomenon. In

this chapter, we concentrate this fact and to develop the proposed model.

Here, we consider an example on frog’s life cycle, where tadpole (immature

predator) food habit is algae and frog (mature predator) food habit is in-

sect. Algae and insect lived in different environments. They also belong to

different classes. So their growth rates and environmental carrying capacities

are different and also they have no direct link in prey-predator relationship.

Tadpole transforms into frog after certain stage but some tadpoles died of en-

vironmental difficulties. To more clarify this fact, a graphical representation is

depicted in Figure 7.1. Considering this real-life phenomenon, we design the

mathematical model in Section 7.3.

Figure 7.1: Graphical presentation of discussed phenomenon.
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7.2. Notation

7.2 Notation
Table-7.2.1: Description of the parameters.

Parameter Description of the parameters
x Prey population for immature predator at time t
y Prey population for mature predator at time t
z1 Population of immature predator at time t
z2 Population of mature predator at time t
r Intrinsic growth rate of prey for immature predator
K Environmental carrying capacity of the prey for immature predator
s Intrinsic growth rate of prey for mature predator
L Environmental carrying capacity of the prey for mature predator
m Maximal immature predator per capita consumption rate
m1 Maximal mature predator per capita consumption rate
a, b Half saturation constants
d1 Natural death rate of immature predator
d2 Natural death rate of mature predator
β Immature to mature predator transform rate

7.3 Mathematical model
At time t, assume that x(t) denotes prey population for immature predator

which is denoted by z1(t), and y(t) denotes prey for mature predator which is

considered by z2(t). Here algae is chosen as prey for immature predator and

insect is considered as prey for mature predator. Depending on intake capacity

of predator and other factor, it is assumed that the functional response of

immature population will be Holling type II functional response and that of

mature predator population will be Holling type III functional response. Then

the system of equations becomes as follows:

dx

dt
= rx

(
1− x

K

)
−m xz1

a+ x
dy

dt
= sy

(
1− y

L

)
−m1

y2z2

b+ y2

dz1

dt
= n

xz1

a+ x
− βz1 − d1z1

dz2

dt
= βz1 + n1

y2z2

b+ y2
− d2z2


(7.1)
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with initial conditions x(0) ≥ 0, y(0) ≥ 0, z1(0) ≥ 0 and z2(0) ≥ 0.

And the growth rates of immature and mature predators are denoted by n and

n1 respectively.

7.4 Equilibrium point, Positivity and Bounded-
ness

Consider an interior equilibrium point is P (x̄, ȳ, z̄1, z̄2) where x̄, ȳ, z̄1 and z̄2

are the positive roots of the equation dx
dt

= dy
dt

= dz1
dt

= dz2
dt

= 0. From these

equations, the following results are obtained.

z̄2 = s
(

1− ȳ

L

) b+ ȳ2

m1ȳ
(7.2)

z̄1 = r
(

1− x̄

K

) a+ x̄

m
(7.3)

sm
(

1− ȳ

L

) d2b− ȳ2(n1 − d2)

ȳ
= βm1r

(
1− x̄

K

)
(a+ x̄) (7.4)

x̄ =
a(β + d1)

n− d1 − β
(7.5)

So, the sufficient conditions for the system (7.1) with a positive interior equilib-

rium point are n > d1 + β and n1 > d2, i.e., growth rate of immature predator

population will be greater than the sum of death rate of immature predator

population and transform rate of immature to mature predator population;

and also growth rate of mature predator population will be greater than the

death rate of mature predator population.

Theorem 7.4.1. All the solutions of the system (7.1) are always bounded.

Proof: From the first equation of system (7.1), it is seen that carrying capacity

of prey population of immature predator population is K and from the second

equation of system (7.1), it is seen that the carrying capacity of prey population

of mature predator population is L. For ε1 > 0, we have x ≤ K + ε1 as t→∞
and for ε2 > 0, we have y ≤ L+ ε2 as t→∞.

Now let W = n
m
x+ n1

m1
y + z1 + z2.
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Then we get,

dW

dt
=

n

m

dx

dt
+
n1

m1

dy

dt
+
dz1

dt
+
dz2

dt
dW

dt
= rx

n

m

(
1− x

K

)
+ sy

n1

m1

(
1− y

L

)
− d1z1 − d2z2

dW

dt
≤ rx

n

m
+ sy

n1

m1

− ρz1 − ρz2, where ρ = min{d1, d2}

i.e.,
dw

dt
≤ −ρW + (r + ρ)

n

m
x+ (s+ ρ)

n1

m1

y

i.e.,
dW

dt
≤ −ρW +

n

m
(r + ρ)(K + ε1) +

n1

m1

(s+ ρ)(L+ ε2)

i.e.,
dW

dt
+ ρW ≤ I, (7.6)

where I =
n

m
(r + ρ)(K + ε1) +

n1

m1

(s+ ρ)(L+ ε2)

On integrating both sides of equation (7.6) between 0 to t, we obtain

0 < W ≤ I
ρ
(1 − e−ρt) + e−ρtW [x(0), y(0), z1(0), z2(0)] as t → ∞. Also, we

have 0 < W ≤ I
ρ
. From above analysis, we conclude that the solution space

(x, y, z1, z2) is bounded in the specified region. Thus, the result follows the

theorem.

7.5 Stability analysis
The stability criterion of the system is analyzed at the interior equilibrium

point P (x̄, ȳ, z̄1, z̄2). The Jacobian matrix of the system (7.1) at the interior

equilibrium point P is denoted by J and is defined as follows:

J =


− r
K
x̄+m x̄z̄1

(a+x̄)2
0 −m x̄

a+x̄
0

0 m1ȳz̄2
ȳ2−b

(b+ȳ2)2
− s

L
ȳ 0 −m1

ȳ2

b+ȳ2
anz̄1

(a+x̄)2
0 0 0

0 2bn1
ȳz̄2

(b+ȳ2)2
β −β z̄1

z̄2

 .

Now the characteristic equation of system (7.1) around its interior equilibrium

is

det(J − λI) = 0, i.e., λ4 + A1λ
3 + A2λ

2 + A3λ+ A4 = 0.
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where I represents an identity matrix of order 4 and

A1 =
r

K
x̄+

s

L
ȳ −m x̄z̄1

(a+ x̄)2
−m1ȳz̄2

ȳ2 − b
(b+ ȳ2)2

− β z̄1

z̄2

,

A2 = β
z̄1

z̄2

(
m1ȳz̄2

ȳ2 − b
(b+ ȳ2)2

− s

L
ȳ

)
+ 2bm1n1

ȳ3z̄2

(b+ ȳ2)3
+ amn

x̄z̄1

(a+ x̄)3

+

(
m

x̄z̄1

(a+ x̄)2
− r

K
x̄

)(
m1ȳz̄2

ȳ2 − b
(b+ ȳ2)2

+ β
z̄1

z̄2

− s

L
ȳ

)
,

A3 =

{
β
z̄1

z̄2

(
m1ȳz̄2(ȳ2 − b)

(b+ ȳ2)2
− sȳ

L

)
+

2bm1n1ȳ
3z̄2

(b+ ȳ2)3

}(
r

K
x̄−m x̄z̄1

(a+ x̄)2

)
−amn x̄z̄1

(a+ x̄)3

(
m1ȳz̄2

ȳ2 − b
(b+ ȳ2)2

+ β
z̄1

z̄2

− s

L
ȳ

)
,

A4 = amnβ
x̄z̄2

1

(a+ x̄)2z̄2

(
m1ȳz̄2

ȳ2 − b
(b+ ȳ2)2

− s

L
ȳ

)
+

2abmnm1n1x̄ȳ
3z̄1z̄2

(a+ x̄)3(b+ ȳ2)3

Let us consider, A = c1− βc2, B = c3− βc4, C = c5− βc6, D = c7− βc8. Then

we have BC − AD = Q1β
2 + Q2β + Q3 = ϕ(β) (say), where Q1 = c4c6 −

c2c8, Q2 = c2c7 + c1c8− c5c4− c3c6, Q3 = c3c5− c1c7 and det

 C D 0
A B C
0 1 A

 =

Q4β
3 + Q5β

2 + Q6β + Q7 = ψ(β) (say), where Q4 = c2
2c8 − c2c4c6, Q5 =

c2c4c5 + c2c3c6 + c1c4c6 − c2
2c7 − 2c1c2c8 − c2

6, Q6 = c2
1c8 + 2c1c2c7 + 2c5c6 −

c2c3c5 − c1c4c5 − c1c3c6, Q7 = c1c3c5 − c2
1c7 − c2

5.

Here all Qj, (j = 1, 2, ..., 7) are functions of β since the interior equilibrium

depends on β. But for a known parameter set it is possible to find all the

values of Qj in terms of β. In that case, we assume that β is the common

positive root of ϕ(β) = 0 and ψ(β) = 0. Now using Routh-Hurwitz criteria

around the interior equilibrium point, we can state and prove the following

theorem for the local asymptotic stability of the system (7.1).

Theorem 7.5.1. Assuming all Qj (j = 1, 2, ..., 7), C, BC − AD and

det

 C D 0
A B C
0 1 A

 be positive. Then the equilibrium point P (x̄, ȳ, z̄1, z̄2) of the

system (7.1) is locally asymptotically stable.

Proof: Using Routh-Hurwitz criterion, the conclusion becomes all eigenvalues

of the system (7.1) around its interior equilibrium point P (x̄, ȳ, z̄1, z̄2) has
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negative real part. Consequently the system will be locally asymptotically

stable. This result evinces the proof of the theorem.

Lemma 6. In theorem (7.5.1), we have proved that for a known parameter

set we find all Qj in terms of β. In this case if β̄ is the only common pos-

itive root of ϕ(β) = 0 and ψ(β) = 0. Then for β > β̄, BC − AD and

det

 C D 0
A B C
0 1 A

 are positive. Again if BC − AD and det

 C D 0
A B C
0 1 A


are negative then the system (7.1) must be unstable around P (x̄, ȳ, z̄1, z̄2). Also

if det

 C D 0
A B C
0 1 A

 = 0 then the system (7.1) undergoes through a bifurca-

tion. In the next theorem, we describe about Hopf bifurcation.

Theorem 7.5.2. The system (7.1) follows Hopf bifurcation about the point

P (x̄, ȳ, z̄1, z̄2) for β = β̄.

Proof: For β = β̄, we have det

 C D 0
A B C
0 1 A

 = 0 and then the eigenvalues

of the system at P (x̄, ȳ, z̄1, z̄2) can be represented as λ1,2 = ±i
√
C1 and λ3,4 =

±i
√
C2.

Considering λ1,2 = φ1(β)± iφ2(β) and λ3,4 = φ3(β)± iφ4(β). Now it is obvious

to show that dφ
dβ
6= 0 at the point β = β̄ where φ represents φ1 and φ3. Again,

we have φ(β̄) = 0. Therefore, it is clear that our system (7.1) follows a Hopf

bifurcation at the interior equilibrium for the critical value of β, i.e., for β = β̄,

with the help of given conditions (103). So, the theorem is obvious.

Prey-predator models with constant parameters are often found to approach

a steady state in which the species coexist in equilibrium. But if parameters

used in the model are changed, other types of dynamical behavior may occur

and the critical parameter values at which such transitions happen, are called

bifurcation points. The purpose of this chapter is to determine the stability

behavior of the system in presence of different density-dependent factors of

the prey-predator interactions. To study the transition of the system with

respect to the small changes in the density dependent factors, we consider, β
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as bifurcation parameter and it represents the critical value or the bifurcating

value of the concerned bifurcation parameter.

Theorem 7.5.3. The system (7.1) will be globally asymptotically stable at

an interior equilibrium point P (x̄, ȳ, z̄1, z̄2), if the sufficient conditions that

R(0) > 0 where R(x) = r
K
− mz̄1

(a+x̄)(a+x)
holds.

Proof: Let us choose a Lyapunov function which is defined as follows

V (x, y, z1, z2) =
∫ x
x̄
x−x̄
x
dx+ p1

∫ y
ȳ
y−ȳ
y
dy + p2

∫ z1
z̄1

z1−z̄1
z1

dz1 + p3

∫ z2
z̄2

z2−z̄2
z2

dz2

where pi (i = 1, 2, 3) is suitable non negative constant, to be determined in the

following subsequent steps.

Time derivative of the equation along the solution of the system (7.1) is given

as:

dV

dt
=

x− x̄
x

dx

dt
+ p1

y − ȳ
y

dy

dt
+ p2

z1 − z̄1

z1

dz1

dt
+ p3

z2 − z̄2

z2

dz2

dt

= (x− x̄)

{
r
(

1− x

K

)
−m z1

a+ x

}
+ p1(y − ȳ)

{
s
(

1− y

L

)
−m1

yz2

b+ y2

}
+p2(z1 − z̄1)

{
n

x

a+ x
− β − d1

}
+ p3(z2 − z̄2)

{
β
z1

z2

− n1
y2

b+ y2
− d2

}
Again at the interior equilibrium point P (x̄, ȳ, z̄1, z̄2), ẋ = ẏ = ż1 = ż2 = 0 i.e.,

r = r
K
x̄+ mz̄1

a+x̄
, s = s

L
ȳ +m1

ȳz̄2
b+ȳ2

, β + d1 = n x̄
a+x̄

, −d2 = n1
ȳ2

b+ȳ2
− β z̄1

z̄2
.

Substituting these, we have

dV

dt
= (x− x̄)

{
− r

K
(x− x̄) +m

(
z̄1

a+ x̄
− z1

a+ x

)}
+p1(y − ȳ)

{
− s
L

(y − ȳ)−m1

(
yz2

b+ y2
− ȳz̄2

b+ ȳ2

)}
+p2(z1 − z̄1)

{
n

(
x

a+ x
− x̄

a+ x̄

)}
+p3(z2 − z̄2)

{
β

(
z1

z2
− z̄1

z̄2

)
− n1

(
y2

b+ y2
− ȳ2

b+ ȳ2

)}
=

(
− r

K
+

mz̄1

(a+ x)(a+ x̄)

)
(x− x̄)2 − p1

(
s

L
+

m1z2(b− yȳ)

(b+ ȳ2)(b+ y2)

)
(y − ȳ)2

−p3β
z̄1

z2z̄2
(z2 − z̄2)2 +

(
m

a+ x
+ p2

an

(a+ x̄)(a+ x)

)
(x− x̄)(z1 − z̄1)
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−p1
m1y

(b+ ȳ2)
(y − ȳ)(z2 − z̄2) + p3

β

z2
(z1 − z̄1)(z2 − z̄2)

−p3n1b
(y + ȳ)

(b+ ȳ2)(b+ y2)
(y − ȳ)(z2 − z̄2) (7.7)

Assume that, p1 = 0, p2 = m(a+x̄)
an

, p3 = 0. Then (7.7) becomes as follows:

dV

dt
= −

(
r

K
−m z̄1

(a+ x)(a+ x̄)

)
(x− x̄)2 (7.8)

Since, R(0) > 0 then from (7.8), we conclude that dV
dt
≤ 0. So, the theorem

holds.

7.6 Numerical Simulation
To describe the analytical results numerically, we take some hypothetical data.

Here we use MATLAB 7.10 software to analyze numerical simulation. Now,

we choose a parameter set P1(r = 1.5; s = 2.6;K = 20;L = 25;m1 = 0.7;n1 =

0.3;m = 2;n = 0.9; a = 2; d2 = 0.2; d1 = 0.1; b = 6) and β = 0.7 with initial

point as B(9, 7, 7, 3) and the graphical representation is shown in Figure 7.2.

In Section 3, we have discussed about existence and boundedness of the interior

equilibrium point P (x̄, ȳ, z̄1, z̄2). From the stability analysis, we have seen that

if β > β̄ then the system is stable, and it β < β̄ then the system is unstable.

Using that parameter set with β(= 0.7) > β̄, we draw Figure 7.2. From Figure

7.2, we have observed that the system is stable. Using that parameter set with

β(= 0.5) < β̄, we draw Figure 7.3. From Figure 7.3, we have seen that the

system is unstable. For the existence of the system, the intrinsic growth rate of

prey populations has an important role. From Figure 7.4, it is observed that,

for fixed carrying capacity, the density of both prey population are inversely

proportional and density of both predator population are directly proportional

to the intrinsic growth rate of prey population of immature predator. From

Figure 7.5, it is noticed that, for changing the growth rate of prey population

of mature predator, prey population of immature predator as well as immature

predator population will remain same but prey population of mature predator

as well as mature predator is directly proportional. Carrying capacity of any
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system has an impact for an eco-friendly environment. When the other pa-

rameters remain same, the prey population of immature predator, immature

predator population and mature predator population are directly proportional

to the carrying capacity of the prey population of immature predator. Also,

when the other parameters remain same, the prey population of mature preda-

tor is inversely proportional to the carrying capacity of the prey population

of immature predator which is shown in Figure 7.6. Also from Figure 7.7,

it is seen that both prey population directly proportional and both predator

population inversely proportional to per capita consumption rate of immature

predator population. From Figure 7.8, it is observed that the prey population

of mature predator as well as mature predator population inversely propor-

tional to the per capita consumption rate of mature predator but there is no

impact of per capita consumption rate of mature predator on prey population

of immature predator as well as immature predator population.

7.7 Chapter Summary
We have introduced a prey-predator model with stage structure of predator.

Also we have considered that preys for immature predator and mature preda-

tor are different. Consumption rates of prey by the immature predator and

mature predator have been described by suitable functions with an ecological

phenomenon. Both preys obey logistic growth rate. Also, we have described

the different growth rates and different carrying capacities for the different

prey populations. In this context, this research work is significantly different

in compare to other research works in this area. Immature predator trans-

forms to mature predator in a constant rate, which is chosen as bifurcation

parameter. Mortality rates of immature predator and mature predator are

different. The local as well as global stability around at an interior equilib-

rium has been discussed. The problem has been illustrated with a numerical

example. Also the proposed model has been analyzed with the geometrical

figures. Global stability of the system has been shown by choosing a suitable

Lyapunov function. Finally, we have presented some numerical simulations to
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verify the analytic results and the system has been analyzed through graphical

illustrations.

Figure 7.2: Graphical representation of the system with parameter set P1 and
β = 0.7.

Figure 7.3: Graphical representation of the system with parameter set P1 and
β = 0.5.
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Figure 7.4: Change of x, y, z1 and z2 of the system (7.1) with respect to change
of intrinsic growth rate of prey population of immature predator population
with parameter set {s = 2.6;K = 20;L = 25;m1 = 0.7;n1 = 0.3;m = 2;n =
0.9; a = 2; d2 = 0.2; d1 = 0.1; b = 6}. Here (—) line corresponds to r = 1.3, (-
- -) line to r = 1.5 and (· · · ) line to r = 1.7.

Figure 7.5: Change of x, y, z1 and z2 of the system (7.1) with respect to change
of intrinsic growth rate of prey population of mature predator population with
parameter set {r = 1.5;K = 20;L = 25;m1 = 0.7;n1 = 0.3;m = 2;n =
0.9; a = 2; d2 = 0.2; d1 = 0.1; b = 6}. Here (—) line corresponds to s = 2.4, (-
- -) line to s = 2.6 and (· · · ) line to s = 2.8.
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Figure 7.6: Change of x, y, z1 and z2 of the system (7.1) with respect to change
of carrying capacity of prey population of immature predator population with
parameter set {r = 1.5; s = 2.6;L = 25;m1 = 0.7;n1 = 0.3;m = 2;n =
0.9; a = 2; d2 = 0.2; d1 = 0.1; b = 6}. Here (—) line corresponds to K = 18, (-
- -) line to K = 20 and (· · · ) line to K = 25.

Figure 7.7: Change of x, y, z1 and z2 with respect to change of m with parameter
set {r = 1.5; s = 2.6;K = 20;L = 25;m1 = 0.7;n1 = 0.3;n = 0.9; a = 2; d2 =
0.2; d1 = 0.1; b = 6}. Here (- - -) line corresponds to m = 1.8, (—) line to
m = 2 and (· · · ) line to m = 2.2.
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Figure 7.8: Change of x, y, z1 and z2 with respect to change of m1 with parame-
ter set {r = 1.5; s = 2.6;K = 20;L = 25;n1 = 0.3;m = 2;n = 0.9; a = 2; d2 =
0.2; d1 = 0.1; b = 6}. Here (—) line corresponds to m1 = 0.5, (- - -) line to
m1 = 0.7 and (—) line to m1 = 0.9.
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