
Chapter 6

Holling-Tanner model with
Beddington-DeAngelis functional
response and time delay
introducing harvesting∗

The chapter is designed with the Holling-Tanner prey-predator model with

Beddington-DeAngelis functional response including prey harvesting. Gesta-

tional time delay of predator and the dynamic stability of time delay preventing

system are incorporated into the system in this chapter. The equilibria of the

proposed system are determined and the existence of interior equilibrium point

for the proposed system is described. Local stability of the system with the

magnitude of time delay at the interior equilibrium point is discussed. There-

after, the direction and the stability of Hopf bifurcation are established with

the help of normal theory and center manifold theorem. Furthermore, profit

function is calculated with the help of bionomic equilibrium and it is optimized

using optimal control. Finally, some numerical simulations are introduced to

verify the validity of analytic results of the proposed model.

∗A part of this chapter has been appeared in Mathematics and Computers in
Simulation , Elsevier, IF: 1.218, 142, 1-14, (2017).
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Chapter 6: Holling-Tanner model with Beddington-DeAngelis functional
response and time delay introducing harvesting

6.1 Introduction
The relationship between prey and predator is natural phenomena for univer-

sal existence in our ecological system. Interactions of prey and predator are

one of the common and well known factor in ecological systems. This ecologi-

cal system is one of the important fields in the study of mathematical biology.

In the 1920, Vito Volterra described whether it would be possible to clarify

the fluctuations that had been noticed in the fish population of the Adriatic

sea-fluctuations that were of great concern to fishermen in time of low fish

populations. Time delay has an important role in biological population. Dif-

ferential equation with time delay has received great attention in research of

recent years among theoretical and mathematical ecologists. Although, study

of time delay can have very complex impact on the dynamics of a system,

for example, it can cause the loss of stability, can induce various oscillations

and periodic solutions. In different ecological systems, interaction between

predator and prey is also different. Due to this reason functional response is

changed. Beddington-DeAngelis functional response is most important in bi-

ological interaction. This functional response was constructed by Beddington

(7) and DeAngelis et al.(22).

In ecology, predation is a biological interaction where predator feeds on its

prey. In particular case, the prey population is so large than the predator

population, then a particular type of prey-predator model has been considered

which plays a special role in view of interesting dynamics and it possesses the

Holling-Tanner predator-prey system (110). Then the Holling-Tanner prey-

predator model is defined as follows:
dx

dt
= rx

(
1− x

K

)
− ψ(x, y)y

dy

dt
= βy

(
1− y

γx

)
 (6.1)

with initial conditions x(0) > 0, y(0) ≥ 0 and γ > 0. The function ψ(x, y)

denotes the predator response function.

In Southern Ocean, one species, the Antarctic krill (Euphausia superba) makes

up an estimated biomass. Of this, over half is eaten by whales, seals, penguins,
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6.1. Introduction

squid and fish each year, and is replaced by growth and reproduction. Con-

sidering this phenomenon, the Holling-Tanner prey-predator model has been

designed with Beddington-DeAngelis functional response in this chapter and

consider ψ(x, y) = αx
a+bx+my

where α denotes the maximal predator per capita

consumptions rate, i.e., the maximum number of prey population can be eaten

by a predator in each time unit and a, b,m > 0. Since most of the krill is used

for aquaculture and aquarium feeds, as bait in sport fishing, or in the phar-

maceutical industry, for this reason, we introduce the harvesting effort h(t) on

prey population. Then the system of equations (6.1) reduces to

dx

dt
= rx

(
1− x

K

)
− αxy

a+ bx+my
− h(t)

dy

dt
= y

(
β − ny

x

)
 (6.2)

where n = β
γ
, x(0) > 0, y(0) ≥ 0.

Considering that the harvest rate h(t) in the form h(t) = qEx. Thus the

system (6.2) becomes as follows:

dx

dt
= rx

(
1− x

K

)
− αxy

a+ bx+my
− qEx

dy

dt
= y

(
β − ny

x

)
 (6.3)

with initial conditions x(0) > 0, y(0) ≥ 0.

Gestation is an important factor in predator population, for that reason, here

the time delay is introduced. To increase the predator population, all the

metabolic energy of predator obtains through its food is inherently assumed

that it is used for growth. It is also considered that the predator popula-

tion consumes the prey population at a constant rate, but the reproduction of

predators after predating the prey population is not instantaneous. Hence it

will be incorporated by some time lag required for the gestation of predators.

Let τ be the time delay in time interval between the moments when an indi-

vidual prey is killed and the corresponding biomass is added to the predator
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population. Therefore, the system (6.3) finally stated as below:

dx

dt
= rx

(
1− x

K

)
− αxy

a+ bx+my
− qEx

dy

dt
= y

(
β − ny(t− τ)

x(t− τ)

)
 (6.4)

with initial conditions x(0) > 0, y(0) ≥ 0 and (x(t), y(t)) ∈ C+ = C([−τ, 0], R2
+).

6.2 Notation
Table-6.2.1: Description of the parameters.

Parameter Description of the parameters
x Population of prey at time t
y Population of predator at time t
r Intrinsic growth rate of prey
K Environmental carrying capacity of the prey
β Biotic potential of the predator population
1
γ

Amount of prey required to support a predator at equilibrium
q Catchability co-efficient
E Fishing effort for harvesting the generalist predator population

6.3 Equilibria and their existence criteria
The steady states of the system (6.4) are obtained by solving the equations.

Let E∗3(x∗, y∗) be the interior equilibrium point, then

y∗ =
β

n
x∗

and x∗ is the positive root of the following equation

(nb+mβ)
rx2

K
+
{ r
K
na+ αβ − (r − qE)(nb+mβ)

}
x− na(r − qE) = 0 (6.5)

From above equation (6.5), it is seen that when r > qE then there exists

a positive root of the equation. Hence the intrinsic growth rate is greater

than harvest rate per unit population, which is the sufficient condition of the

proposed system for existing a positive interior equilibrium point.
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6.4. Boundedness

6.4 Boundedness
Here the boundedness of the system has been discussed by stating a theorem

including the proof.

Theorem 6.4.1. The solution of the system (6.4) with positive initial condition

satisfies:

lim
t→∞

supx(t) ≤ max{x(0), K}

and lim
t→∞

sup y(t) ≤ g1

where g1 = β e
βτ

n
max{x(0), K}.

Proof: Assuming that (x(t), y(t)) be an arbitrary positive solution of the

system with positive initial condition, we have

x(t) = x(0)exp

[∫ t

0

F (x(u), y(u))du

]
(6.6)

where F (x(u), y(u)) = r
(

1− x(u)
K

)
− αy(u)

a+bx(u)+my(u)
− qE.

Now two cases occur,

Case 6.4.1.1: Assuming x(0) ≤ K and our claim is x(t) ≤ K ∀ t ≥ 0.

Otherwise there exist two positive real numbers t1 and t2 with t1 < t2 such

that x(t1) = K and x(t) > K ∀ t ∈ (t1, t2). Then ∀ t ∈ (t1, t2),

x(t) = x(0)exp

[∫ t

0

F (x(u), y(u))du

]
= x(0)exp

[∫ t1

0

F (x(u), y(u))du

]
exp

[∫ t

t1

F (x(u), y(u))du

]
= x(t1)exp

[∫ t

t1

F (x(u), y(u))du

]
[Using equation (6.6)]

< x(t1)

as F (x(u), y(u)) < 0 ∀ t ∈ (t1, t2), which contradicts of our hypothesis.

Hence our assumption is right, i.e., x(t) ≤ K ∀ t ≥ 0.

Case 6.4.1.2: Here we consider x(0) > K. Then as long as x(t) ≥ K, t ≥ 0.
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x(t) = x(0)exp
[∫ t

0
F (x(u), y(u))du

]
< x(0), as F (x(u), y(u)) < 0 ∀ x(t) >

K.

Combining cases 6.4.1.1 and 6.4.1.2, we get for any positive solution which

satisfies x(t) ≤ max{x(0), K} for t ≥ 0.

Again from (6.4), we have

dy(t)

dt
< βy(t).

Hence for t > τ, y(t) ≤ y(t− τ)eβτ , i.e., y(tτ ) ≥ y(t)e−βτ .

Substituting this value in system of equations (6.4), we get

dy(t)

dt
≤ y

(
β − e−βτ

n
y(t) max{x(0), K}

)
which implies that

lim
t→∞

sup y(t) ≤ β
eβτ

n
max{x(0), K} = g1, for t > τ.

6.5 Local stability and Hopf bifurcation analysis
In this Section, the stability has been described at the interior equilibrium

point. Then two cases arise:

Case 6.5.1: For τ = 0

Here the system has been discussed without delay around its interior equilib-

rium point (x∗, y∗). The characteristic equation of the system in equation (6.4)

is

λ2 + h1λ+ h2 = 0

where h1 = r
K
x∗ + β − bnαβx∗2

{an+(nb+mβ)x∗}2 and h2 = rβ
K
x∗ + anαβx∗

{an+(bn+βm)x∗}2 . Now

using Routh-Hurwitz criteria around the interior equilibrium point, we get

the system (6.4) will be locally asymptotically stable in (x∗, y∗) if the system

follows the following condition r
K

+ β > bnαβx∗

{an+(nb+mβ)x∗}2 .

Case 6.5.2: For τ 6= 0

Here, we discuss the system in presence of delay around its interior equilibrium
point (x∗, y∗), For simplicity, we consider v1 = x−x∗ and v2 = y−y∗. Then by
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6.5. Local stability and Hopf bifurcation analysis

Taylor series expansion of system in equations (6.4) about the point (x∗, y∗)
as follows:

dv1(t)

dt
= a1v1(t) + a2v2(t) +

∑
i+j≥2

aijv
i
1(t)vj2(t)

dv2(t)

dt
= b1v1(t− τ) + b2v2(t− τ) +

∑
i+j+k≥2

bijkv
i
1(t− τ)vj2(t)vk2 (t− τ)

 (6.7)

where

a1 = r − 2
rx∗

K
− qE − (a+my∗)αy∗

(a+ bx∗ +my∗)2
, a2 = − (a+ bx∗)αx∗

(a+ bx∗ +my∗)2

b1 = n
y∗2

x∗2
, b2 = −ny

∗

x∗

aij =
1

i!j!

∂i+jf1

∂xi(t)∂yj(t)

∣∣∣∣
(x∗,y∗)

bijk =
1

i!j!k!

∂i+j+kf2

∂xi(t− τ)∂yj(t)∂yk(t− τ)

∣∣∣∣
(x∗,y∗)

f1 = rx
(

1− x

K

)
− αxy

a+ bx+my
− qEx

f2 = y

(
β − ny(t− τ)

x(t− τ)

)
To investigate the stability at the interior equilibrium point of system of equa-

tions (6.4), we linearize the system (6.7) as follows:

dv1(t)

dt
= a1v1(t) + a2v2(t)

dv2(t)

dt
= b1v1(t− τ) + b2v2(t− τ)

 (6.8)

Then the characteristic equation of the system will become as:∣∣∣∣ a1 − λ a2

b1e
−λτ b2e

−λτ − λ

∣∣∣∣ = 0

i.e., λ2 − Pλ−Qλe−λτ +Re−λτ = 0 (6.9)

where P = a1, Q = b2 and R = a1b2 − b1a2.

The eigen values of the system (6.4) around its interior equilibrium point

(x∗, y∗) are denoted as λ(τ) = φ(τ) ± iω(τ), (ω > 0). But the change of

stability around interior equilibrium point will occur for Real(λ) = 0. Hence
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it is found that the position of stability for λ(τ) = ±iω(τ). So, from equation

(6.9), we have

ω2 +Qω sin(ωτ)−R cos(ωτ) + i(Pω +Qω cos(ωτ) +R sin(ωτ)) = 0 (6.10)

Separating real and imaginary parts from equation (6.10), we have

ω2 +Qω sin(ωτ)−R cos(ωτ) = 0 (6.11)

Pω +Qω cos(ωτ) +R sin(ωτ) = 0 (6.12)

Solving equations (6.11) and (6.12), we get

cos(ωτ) = ω2 R− PQ
R2 +Q2ω2

(6.13)

sin(ωτ) = −ωPR +Qω2

R2 +Q2ω2
(6.14)

Eliminating trigonometric functions from equations (6.13) and (6.14), we get

ω4 + ω2(P 2 −Q2)−R2 = 0 (6.15)

Hence, the unique positive root (say ω0) of equation (6.15) is

ω0 =

√
−(P 2 −Q2) +

√
(P 2 −Q2)2 + 4R2

2
(6.16)

Since ω0 is the root of equation (6.15), then from equation (6.14), we get the

corresponding critical value of time delay τk as

τk =
1

ω0

{
arcsin

(
−ω0

PR +Qω2
0

R2 +Q2ω2
0

)
+ 2kπ

}
, k = 0, 1, 2, · · · (6.17)

Now we test whether the roots of (6.10) pass the imaginary axis of the complex

plane as τ varies. Assuming that φ(τk) = 0 and ω(τk) = ω0 when λ(τ) =

φ(τ) + iω(τ) be the root of equation (6.10).

Theorem 6.5.1. The following transversality conditions are satisfied[
d(R(λ(τ)))

dτ

]
τ=τk

> 0.
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Proof: Applying λ(τ) = φ(τ) + iω(τ) in equation (6.9) and taking the deriva-

tive with respect to τ , we get[
dλ

dτ

]−1

=
eλτ (2λ− P )

λ(R−Qλ)
− Q

λ(R−Qλ)
− τ

λ
(6.18)

Using (6.9) in (6.18), we get

R

[
dλ

dτ

]−1

λ=iω0

= R

[
eλτ (2λ− P )

λ(R−Qλ)
− Q

λ(R−Qλ)

]
λ=iω0

=

[
(−PR− 2Qω2

0) sin(ω0τ) + (−PQ+ 2C)ω0 cos(ω0τ)−Q2ω0

(R2 +Q2ω2
0)ω0

]
=

R2

(R2 +Q2ω2
0)ω2

0

> 0

For each τ = τk, the transversality condition and Hopf-bifurcation are valid.

When τ = τk, the biquadratic equation (6.15) has only one positive root and

therefore, there exists no interval for the time delay τ for which the switching

of stability from instability to stability of the interior equilibrium is possible

[cf. (56),(60),(90)].

Considering τ ∗ = mink {τk} i.e., τ∗ is the smallest positive value of τk, k =

1, 2, 3, ... is given by equation (6.17). Now from case 6.5.1 and case 6.5.2 at the

positive equilibrium point E∗3 with Hopf bifurcation of the proposed model, we

consider the following lemma.

Lemma 5. The interior equilibrium point E∗3 of the system (6.4) exists and

locally asymptotically stable when τ ∈ [0, τ∗) and unstable when τ > τ ∗ if
r
K

+ β > bnαβx∗

{an+(nb+mβ)x∗}2 . Also, when τ = τ ∗ then the system (6.4) undergoes a

Hopf bifurcation at E∗3 .

6.6 Direction and stability of Hopf bifurcation
Here, we study the direction and stability of Hopf bifurcation of the bifurcating

periodic solutions at positive interior equilibrium point E∗3(x∗, y∗) by using

normal theory and the center manifold theorem introduced by Hassard et al.

(40). We derive the sufficient condition that the system (6.4) undergoes the
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Hopf bifurcation at the critical value τ = τ ∗. Considering τ = τ ∗ + µ, µ ∈ R.
That implies Hopf bifurcation occurs for µ = 0 of the system (6.4).

Let v1(t) = x(t)− x∗ and v2(t) = y(t)− y∗. We normalize the delay with time

scaling t→ t
τ
. Then the system of equations (6.4) can be written as

v̇(t) = Lµ(vt) + F (µ, vt) (6.19)

where v =

(
v1

v2

)
and Lµ : C → R, F : R× C → R are given respectively by

Lµ(φ) = (τ ∗ + µ)B1

(
φ1(0)
φ2(0)

)
+ (τ ∗ + µ)B2

(
φ1(−1)
φ2(−1)

)
(6.20)

where B1 =

(
a1 a2

0 0

)
, B2 =

(
0 0
b1 b2

)
and

F (µ, φ) = (τ ∗ + µ)

(
Σi+j≥2aijφ

i
1(0)φj2(0) · · ·

Σi+j+k≥2bijkφ
i
1(−1)φj2(0)φk2(−1) · · ·

)
(6.21)

Where the values of a1, a2, b1 and b2 are same as in equation (6.7) and a20 =

− r
K

+bα (a+my∗)y∗

(a+bx∗+my∗)3
, a11 = − αa

(a+bx∗+my∗)2
−2αbm x∗y∗

(a+bx∗+my∗)3
, a02 = mα(a+bx∗)x∗

(a+bx∗+my∗)3
,

b200 = −n y∗
2

x∗3
, b210 = −n y∗

x∗3
, b300 = n y

∗2

x∗4
, b011 = − n

x∗
, b110 = n y∗

x∗2
, b101 = n y∗

x∗2
.

By Riesz representation theorem, there exists a 2 × 2 matrix function η(θ, µ)

of bounded variation for θ ∈ [−1, 0], such that

Lµφ =

∫ 0

−1

dη(θ, µ)φ(θ), φ ∈ C (6.22)

Assuming

η(θ, µ) = (τ ∗ + µ)(B1δ(θ) +B2δ(θ + 1)) (6.23)

where δ(θ) is the Kronecker delta function defined by

δ(θ) =

{
0, θ 6= 0,
1, θ = 0.

For φ ∈ C([−1, 0],R2), we define

A(µ)φ =


dφ(θ)

dθ
, θ ∈ [−1, 0),∫ 0

−1

dη(µ, s)φ(s), θ = 0,
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and

R(µ)φ =

{
0, θ ∈ [−1, 0),
F (µ, φ), θ = 0,

Then the system of equation (6.19) can be transformed into the following

equation

v̇(t) = A(µ)vt +R(µ)vt (6.24)

where vt = v(t+ θ) = (v1(t+ θ) + v2(t+ θ)).

For ψ ∈ C1([0, 1], (R2)∗), where (R2)∗ is the 2-dimensional space of row vectors,

define

A∗ψ(s) =


−dψ(s)

ds
, s ∈ [−1, 0),∫ 0

−1

dηT (t, 0)ψ(−t), s = 0,

and a bilinear inner product:

〈ψ(s), φ(θ)〉 = ψ̄(0)φ(0)−
∫ 0

θ=−1

∫ θ

ξ=0

ψ̄(ξ − θ)dη(θ)φ(ξ)dξ,

where η(θ) = η(θ, 0) and A(0), A∗ are adjoint operators. From Section 6.5, we

have ±iω0τ
∗ are eigenvalues of A(0) for the time scaling t → t

τ
, thus, these

are the eigenvalues of A∗. Let q(θ) = (1, ρ)T eiω0τ∗θ is the eigenvector of A(0)

corresponding to eigenvalue iω0τ
∗.

Then A(0)q(θ) = iω0τ
∗q(θ). It follows from the definition of A(0) and equa-

tions (6.20), (6.22), (6.23) that

τ ∗
(

iω0 − a1 −a2

−b1e
−iω0τ∗ iω0 − b2e

−iω0τ∗

)
q(0) =

(
0
0

)
.

Thus we can easily obtain q(0) = (1, ρ)T , where ρ = b1e−iω0τ
∗

iω0−b2e−iω0τ
∗ .

Similarly, let q∗(s) = D(1, ρ∗)eiω0τ∗s is the eigenvector of A∗ corresponding to

−iω0τ
∗, then by definition of A∗ and equations (6.20), (6.21), (6.22) that

q∗(s) = D(1, ρ∗)eiω0τ∗s = D

(
1,−iω0 + a1

b1eiω0τ∗

)
eiω0τ∗s.

In order to assure that 〈q∗(s), q(θ)〉 = 1, we need to choose a suitable value of

D. From equation (6.24), we have

D =
1

1 + b1τ ∗ρ∗eiω0τ∗ + ρ∗ρ̄(1 + b2τ ∗eiω0τ∗s)
.
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Recall that the Hopf-bifurcating periodic solutions (x(t, µ(ε)), y(t, µ(ε))) of

(6.4) have period T (ε) and a nonzero Floquet exponent B(ε), where µ,B and

T have the following expression:

µ = µ2ε
2 + µ4ε

4 + ...

B = β2ε
2 + β4ε

4 + ...

T = 2Π
(1 + T2ε

2 + T4ε
4 + ...)

ω0

ε is a small non-negative parameter. To determine the direction of Hopf-

bifurcation, the stability of the periodic solutions and period of the bifurcating

periodic solutions, we only investigate the coefficients µ2, β2 and T2. As per Pal

and Mondal (73), we get the following results as stated below.

gij(µ) =
∂r+s

∂zr∂z̄s
(e1(µ), F (ze2(µ) + z̄ē2(µ), µ)) |z=0 when r + s > 0,

i, j = 0, 1, 2, · · ·

C1(0) =
i

2ω0τ ∗

(
g11g20 − 2|g11|2 −

|g02|2

3

)
+
g21

2
(6.25)

µ2 = − Re{C1(0)}
Re{dλ(τ ∗0 )/dτ}

(6.26)

β2 = 2Re{C1(0)} (6.27)

T2 = −Im{C1(0)}+ µ2Im{dλ(τ ∗0 )/dτ}
ω0τ ∗

(6.28)

According to Hassard et al.(40), we can state the properties of Hopf bifurcation

at the critical value of τ = τ ∗ in the following Remark.

Remark: From the equations (6.25)-(6.28), we can conclude that

A. The direction of Hopf bifurcation is determined by the sign of µ2.

(i) If µ2 > 0; the Hopf bifurcation is supercritical.

(ii) If µ2 < 0; the Hopf bifurcation is subcritical.

B. The stability of the bifurcating periodic solution is determined by β2.

(i) If β2 > 0; the bifurcated periodic solutions are unstable.

(ii) If β2 < 0; the bifurcated periodic solutions are stable.

C. The period of the bifurcating periodic solution is determined by T2.

(i) If T2 > 0; period of the bifurcating periodic solution increases.

(ii) If T2 < 0; period of the bifurcating periodic solution decreases.
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6.7 Bionomic equilibrium and optimal control
An amalgamation of the concept of economic equilibrium and biological equi-

librium is called bionomic equilibrium.

The net economic revenue is obtained from the fishery is P (x, y, E, t) = the

total revenue obtained by selling the harvested biomass − total cost for the

effort devoted to harvesting = pqEx − cE, where p is the constant price per

unit biomass of the prey and c is the constant cost per unit effort, then we

consider the present value J of a continuous time-stream of revenues as follows:

J =

∫ ∞
0

e−δtP (x, y, E, t)dt (6.29)

where δ(> 0) denotes the instantaneous annual rate of discount (82). Our

aim is to maximize J subject to the state equations (6.4) using Pontryagin’s

maximum principle (80). The control variable E(t) is subject to the constraint

set 0 ≤ E ≤ Emax. At first, we construct the corresponding Hamiltonian

function

H = e−δt(pqx− c)E + λ1

{
rx
(

1− x

K

)
− αxy

a+ bx+my
− qEx

}
+λ2y

(
β − ny

x

)
(6.30)

where λ1 and λ2 are called the adjoint variables.

By Pontryagin’s maximum principle, the adjoint equations are as follows:

dλ1

dt
= −∂H

∂x
= −

[
e−δtpqE + λ1

{
r − 2x

r

K
− (a+my)αy

(a+ bx+my)2
− qE

}
+λ2n

y

x2

]
(6.31)

dλ2

dt
= −∂H

∂y
= λ1

(a+ bx)αx

(a+ bx+my)2
+ λ2

{
2n
y

x
− β

}
(6.32)

Now, we derive an optimal equilibrium solution of the problem at the interior

equilibrium E∗3(x∗, y∗). Then from equations (6.31) and (6.32), we get

dλ1

dt
= −e−δtpqE − λ1A1 − λ2A2 (6.33)

dλ2

dt
= λ1A3 + λ2A4 (6.34)
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where A1 = − r
K
x∗ + bαx∗y∗

(a+bx∗+my∗)2
, A2 = β

x∗
, A3 = (a+bx∗)αx∗

(a+bx∗+my∗)
, A4 = β.

Combining equations (6.33) and (6.34), we have

d2λ2

dt2
+ (A1 − A4)

dλ2

dt
+ (A2A3 − A1A4)λ2 = −e−δtA3pqE (6.35)

The particular solution of equation (6.35) is A3pqE
δ2−(A1−A4)δ+(A2A3−A1A4)

e−δt. The

auxiliary equation of (6.35) is

η2 + (A1 − A4)η + (A2A3 − A1A4) = 0 (6.36)

with two roots η1 and η2. Here η1 + η2 = A4 −A1 and η1η2 = (A2A3 −A1A4).

Then the following cases arise.

Case 6.7.1: (A1 − A4) > 0 and (A2A3 − A1A4) > 0. In this case η1 and η2

are both either real and negative or complex conjugate with negative real part.

Hence the solution of (6.35) is λ1 = C1e
η1t+C2e

η2t+ A3pqE
δ2−(A1−A4)δ+(A2A3−A1A4)

e−δt.

Now λ1 → 0 as t→∞.

Case 6.7.2: (A1 − A4) > 0 and (A2A3 − A1A4) < 0. In this case η1 and η2

are both either real and unequal with negative root having greater magnitude.

Hence the solution of (6.35) is λ1 = C1e
η1t+C2e

η2t+ A3pqE
δ2−(A1−A4)δ+(A2A3−A1A4)

e−δt.

Now λ1 →∞ as t→∞.

Case 6.7.3: (A1 − A4) < 0 and (A2A3 − A1A4) > 0. In this case η1 and η2

are both either real and positive or complex conjugate with positive real part.

Hence the solution of (6.35) is λ1 = C1e
η1t+C2e

η2t+ A3pqE
δ2−(A1−A4)δ+(A2A3−A1A4)

e−δt.

Now λ1 →∞ as t→∞.

Case 6.7.4: (A1 − A4) < 0 and (A2A3 − A1A4) < 0. In this case η1 and η2

are both either real and unequal with positive root having greater magnitude.

Hence the solution of (6.35) is λ1 = C1e
η1t+C2e

η2t+ A3pqE
δ2−(A1−A4)δ+(A2A3−A1A4)

e−δt.

Now λ1 →∞ as t→∞.

From above cases, it is seen that finite optimal equilibrium exists only for the

first case, i.e., in Case 6.5.1. Hence we have the solution as follows:

λ1 = C1e
η1t + C2e

η2t +
A3pqE

δ2 − (A1 − A4)δ + (A2A3 − A1A4)
e−δt.
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6.8 Numerical simulation
From Sections 6.3 and 6.5, we know that the stability of the trivial equilibrium

and the boundary equilibrium are relatively simple. However, the stability of

positive equilibrium (x∗, y∗) is complex. Roughly speaking, delay cannot switch

only the stability but also leads to Hopf bifurcation. To analyze the sensitivity

analysis of the experiments, we use MATLAB 7.10 software and some arbitrary

data for describing the analytical results. Assuming that the parameters set

taken as r = 2.1;K = 50;α = 0.86; a = 0.8; b = 0.1;m = 0.05;n = 0.5; q =

0.2;E = 0.76; and the initial values x(0) = 8, y(0) = 1 for system (6.4).

For τ = 0, two cases occur as follows:

Case 6.8.1.1: When β(= 0.4) > β∗,

From Figures 6.1 and 6.2, we conclude that system (6.4) will be stable after

certain time.

Case 6.8.1.2: When β(= 0.3) < β∗,

From Figures 6.3 and 6.4, we conclude that system (6.4) will always unstable.

Hence we conclude that, in absence of time delay of predator population, the

system (6.4) will be stable when biotic potential of predator population is

greater than or equal 0.4.

For τ 6= 0, two cases arise as follows:

Case 6.8.2.1: When τ(= 0.65) < τ ∗,

From Figures 6.5 and 6.6, we conclude that system (6.4) will be stable after

certain time.

Case 6.8.2.2: When τ(= 1) > τ ∗,

From Figures 6.7 and 6.8, we conclude that system (6.4) will always unstable.

It is well known that krill (prey) has an economical demand in marketing

management. Due to this fact, we include the harvesting for prey population

in the dynamical system. In Figures 1 and 2, we choose the parameter set

r = 2.1;K = 50;α = 0.86; a = 0.8; b = 0.1;m = 0.05;n = 0.5; β = 0.4

and q = 0.2;E = 0.76. Here we see that system with harvesting is stable

after certain time. But when we consider same parameter set in absence of
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harvesting i.e., q = 0;E = 0, then we draw Figures 6.9 and 6.10 and the

system is unstable. Therefore from Figures 6.1 and 6.2, we observe that the

system is stable with harvesting whereas the system is unstable at the same

time without harvesting which is shown in Figures 6.9 and 6.10.

6.9 Chapter Summary
In this chapter an ecological food chain model has been presented based

on Beddington-DeAngelis type functional response and using Holling-Tanner

model for modeling the relationship between prey-predator populations. Har-

vesting effort on prey has been considered in the model with gestational delay

of predator. The boundedness of the system, existence of an attracting set, ex-

istence of local stability of non-negative equilibrium point in delay preventing

system have been established. The direction and stability of Hopf bifurcation

have been established with the help of normal theory and center manifold the-

orem. The problem has been illustrated with a numerical example including

many geometrical figures.

Figure 6.1: Phase space diagram of the system (6.4) for β(= 0.4) > β∗.

122



6.9. Chapter Summary

Figure 6.2: Solution curve of the system (6.4) for β(= 0.4) > β∗.

Figure 6.3: Phase space diagram of the system (6.4) for β(= 0.3) < β∗.

Figure 6.4: Solution curve of the system (6.4) for β(= 0.3) < β∗.
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Figure 6.5: Phase space diagram of the system (6.4) for τ(= 0.65) < τ ∗.

Figure 6.6: Solution curve of the system (6.4) for τ(= 0.65) < τ ∗.

Figure 6.7: Phase space diagram of the system (6.4) for τ(= 1) > τ ∗.
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Figure 6.8: Solution curve of the system (6.4) for τ(= 1) > τ ∗.

Figure 6.9: Phase space diagram of the system (6.4) in absence of harvesting.

Figure 6.10: Solution curve of the system (6.4) in absence of harvesting.
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