
Chapter 4

Analysis of prey-predator three
species fishery model with
harvesting including prey refuge
and migration∗

In this chapter, a prey-predator system with Holling type II functional response

for the predator population including prey refuge region has been analyzed.

Also a harvesting effort has been considered on predator population. The

density-dependent mortality rate for the prey, predator and specialist preda-

tor has been considered. The equilibria of the proposed system have been

determined. Local and global stabilities for the system have been discussed.

The analytic approach have been used to derive the global asymptotic stabil-

ities of the system. The maximal predator per capita consumption rate has

been considered as a bifurcation parameter to evaluate Hopf bifurcation in the

neighborhood of interior equilibrium point. Also, fishing effort have been used

to harvest predator population of the system as a control to develop a dynamic

framework to investigate the optimal utilization of the resource, sustainability

properties of the stock and the resource rent is earned from the resource. Fi-

nally, some numerical simulations have been presented to verify the analytic

results and the system has been analyzed through graphical illustrations.

∗A part of this chapter has appeared in International Journal of Bifurcation and
Chaos, World Scientific, SCI, IF: 1.329, 26(2), 1650022 (19 pages), (2016).
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4.1 Introduction
The relationship between prey and predator is natural phenomena for univer-

sal existence in our ecological system. There are different types of ecological

systems. Interactions of prey and their predators are one of the common and

well known ecological systems. This ecological system is one of the important

field in the study of mathematical ecology.

Most of the researchers have concentrated their attention on two species with

prey-predator including prey refuge with Holling type II functional response;

but we consider three species prey-predator-specialist predator interactions

with prey refuge region with Holling type II functional response and also we

introduce the predator harvesting effort in this chapter which is more realistic

to analyze the whole system. Thus it can be concluded that prey refuge is a

natural phenomenon of prey population as they always want to escape from

predator. So, this phenomenon has been considered in this present chapter

too. These are the main motivations of this chapter.

A real-life example of our proposed problem has been considered to show the

feasibility and effectiveness of this chapter.

A good example is an ecological system of the lake where fishes (Puntiun ticto,

Amhypharyngodon mola etc) are living on zooplankton (Mesocyclops leuckrti,

Daphnia hyalina etc). Also snakes( Bungarus fasciatus, Xenochrophis pisca-

toretc) eat these fishes. So in such a system zooplankton can be considered

as prey, fish can be considered as predator and snakes can be considered as

specialist predator. Fishes are also harvested, so the density of the predator

population decreases. There are some areas where the fishes cannot enter. So,

the zooplanktons are safe from that region, which may be considered as refuge

region. So such system is a good example for the proposed system.
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4.2 Notation
Table-4.2.1: Description of the parameters.

Parameter Description of the parameters
x Population of prey in refuge region at time t
y Population of prey in predatory region at time t
z Population of predator at time t
u Population of specialist predator at time t
r Intrinsic birth rate of prey in refuge region
K Environmental carrying capacity of the prey in refuge region
s Intrinsic birth rate of prey in predatory region
L Environmental carrying capacity of the prey in predatory region
a, b Half saturation constants
d1 Natural death rate of prey
d2 Natural death rate of predator
d3 Natural death rate of specialist predator
n Predator’s consumption rate on prey
n1 specialist predator ’s consumption rate on predator
σ1 Per unit migration of the prey population in refuge region
σ2 Per unit emigration of the prey population in refuge region
q Catchability co-efficient
E Fishing effort for harvesting the specialist predator population

4.3 Formulation of the model
A prey-predator model has been considered with prey refuge and it is assumed

that only predator population is harvested. Generally, the birth rate of a prey

in the refuge region and predatory region will be different due to available of

food sources and other considerable factors. For this reason, different birth

rates have been considered of the prey in two different regions. The presence

of generalist predator has been included in this model. Most of the researchers

have studied either on a fixed number of prey population in refuge region or

on a proportion of prey population in the refuge region. But the carrying ca-

pacity of the refuge and predatory regions are different. Considering all these

factors, total prey populations are broken into two parts: first is refuge re-

gion with density x at time t and second is predatory region with density y at

time t. Again we assume that, at time t, the predator and generalist predator
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populations are denoted by z and u respectively. We consider in the pro-

posed model that, the predator population consumes the prey population with

Holling type-II functional response or Michaelis-Menten functional responce

which is m
a+y

where m denotes the maximal predator per capita consumption

rate, i.e., the maximum number of prey population can be eaten by a preda-

tor in each time unit and the half capturing saturation constant denoted by

a i.e., the number of prey necessary to obtain one-half of the maximum rate

m. Also, the specialist predator population consumes the predator population

with Holling type-II functional response which is m1

b+z
where m1 denotes the

maximal generalist predator per capita consumption rate, i.e., the maximum

number of predator population can be eaten by a specialist predator in each

time unit and the half capturing saturation constant denoted by b i.e., the

number of predator necessary to obtain one-half of the maximum rate m1.

Considering that, in predatory region, interaction may occur to prey popula-

tion in predatory region and the specialist predator population can interact

with predator population. Again, considering that intra-specific competitions

are occurred between the predator as well as specialist predator also, for their

existence. Based on the assumptions that, the system of differential equation

is described as follows:

dx

dt
= rx

(
1− x

K

)
− σ1x+ σ2y − d1x

dy

dt
= sy

(
1− y

L

)
+ σ1x− σ2y − d1y −

myz

a+ y
dz

dt
=

nyz

a+ y
− d2z − γz2 − m1zu

b+ z
− h(t)

du

dt
=
n1zu

b+ z
− d3u− δu2


(4.1)

with initial conditions x(0) ≥ 0, y(0) ≥ 0, z(0) ≥ 0, u(0) ≥ 0, where natural

death rate of prey, predator and specialist predator population denoted as

d1, d2 and d3 respectively and intra-specific competition coefficient of predator

and specialist predator denoted as γ and δ respectively. Again the predator

population consumes prey at the rate n (0 < n ≤ m) and the specialist

predator population consumes predator at the rate n1 (0 < n1 ≤ m1).
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Considering the harvest rate as h(t) = qEz, the system (4.1) becomes

dx

dt
= rx

(
1− x

K

)
− σ1x+ σ2y − d1x

dy

dt
= sy

(
1− y

L

)
+ σ1x− σ2y − d1y −

myz

a+ y
dz

dt
=

nyz

a+ y
− d2z − γz2 − m1zu

b+ z
− qEz

du

dt
=
n1zu

b+ z
− d3u− δu2


(4.2)

with initial conditions x(0) ≥ 0, y(0) ≥ 0, z(0) ≥ 0, u(0) ≥ 0.

4.4 Equilibria and their existence criteria
Different equilibrium points of the system have been analyzed. It is seen that

the system has four possible equilibria. Now these equilibria are given as

follows:

(i) The equilibrium point B0(0, 0, 0, 0) which is trivial.

(ii) The equilibrium point B1(x1, y1, 0, 0) without any effect of the predator

and specialist predator, where x1 is the positive root of the following equation:

sr2

LK2σ2
2

x3
1 +

[
s

Lσ2
2

(σ1 + d1 − r)2 +
r

σ2K
(σ2 + d1 − s)

]
x1 +

1

σ2

{(σ1

+d1 − r)(σ2 + d1 − s)− σ1σ2}+
2sr

LKσ2
2

(σ1 + d1 − r)x2
1 = 0 (4.3)

and y1 =
x1

σ2

[(σ1 + d1 − r) +
r

K
x1] (4.4)

x1 > 0, y1 > 0

(iii) The equilibrium point B2(x∗, y∗, z∗, 0) without any effect on specialist

predator, where x∗ is the positive root of the following equation:

R8 +R7x+R6x
2 +R5x

3 +R4x
4 +R3x

5 +R2x
6 −R1x

7 = 0

and y∗ =
x∗

σ2

[d1 + σ1 − r +
r

K
x∗]

z∗ =
1

γ

{
ny∗

a+ y∗
− d2 − qE

}
So, the sufficient conditions for the system (4.2) has a specialist predator free

equilibrium point are r
K
x∗ > r − (d1 + σ1), ny∗ > (d2 + qE)(a + y∗) and all
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Ri > 0, (i = 1, 2, ..., 8). For detailed analysis, we refer to Appendix.

(iv) The interior equilibrium point B3(x, y, z, u) where x, y, z and u are the

positive roots of the equation ẋ = ẏ = ż = u̇ = 0.

It may be noted that

u =
1

δ
[
n1z

b+ z
− d3] (4.5)

z =
a+ y

ay

[
sy

(
1− y

L

)
+ σ1x− σ2y − d1y

]
(4.6)

y =
x

σ2

[d1 + σ1 − r +
r

K
x] (4.7)

and x is the positive root of the following equation

T18 + T17x+ T16x
2 + T15x

3 + T14x
4 + T13x

5 + T12x
6 + T11x

7 + T10x
8 + T9x

9

+T8x
10 + T7x

11 + T6x
12 + T5x

13 + T4x
14 + T3x

15 + T2x
16 − T1x

17 = 0 (4.8)

So, (n1−d3)z̄ > d3b, sȳ+σ1x̄ > (σ2 +d1 + sȳ
L

)ȳ, d1 +σ1 + rx̄
K
> r and all Ti > 0,

(i = 1, 2, 3, ..., 18) are the sufficient conditions for the system with a positive

interior equilibrium point. For detailed analysis, we refer to Appendix.

4.5 Boundedness
Theorem 4.5.1. Solutions of the system (4.2) are bounded.

Proof: From the first two equations of system (4.2), it is seen that carrying

capacity of total prey population is K+L. For ε > 0, we have x+y ≤ K+L+ε

as t→∞. Thus, we consider x ≤ K+ε1 as t→∞ and y ≤ L+ε2 as t→∞
where ε1 > 0 and ε2 > 0.

Now, let P = x+ y + m
n
z + mm1

nn1
u

Then we get,
dP

dt
≤ rx+ sy − ρm

n
z − ρmm1

nn1

u, where ρ = min{d2 + qE, d3}

i.e,
dP

dt
≤ −ρP + (r + ρ)x+ (s+ ρ)y

i.e,
dP

dt
≤ −ρP + (r + ρ)(K + ε1) + (s+ ρ)(L+ ε2)

i.e,
dP

dt
+ ρP ≤ I, where I = (r + ρ)(K + ε1) + (s+ ρ)(L+ ε2)
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On integrating both sides of above equation and applying the theorem (9), we

obtain:

0 < P ≤ I
ρ
(1 − e−ρt) + P [x(0), y(0), z(0), u(0)] as t → ∞. Also, we have

0 < P ≤ I
ρ

+ P (0). From above analysis, we conclude that the solution space

(x, y, z, u) is bounded in the specified region. Thus, the theorem holds.

4.6 Local Stability
In this section, the stability of the system (4.2) has been analyzed at trivial,

semi-trivial and interior equilibrium points.

Theorem 4.6.1. The system (4.2) is locally asymptotically stable at the trivial

equilibrium point B0(0, 0, 0, 0) if r+s < (σ1 +σ2)+2d1 and rs > σ2r+σ1s+d2
1.

Proof: The characteristic equation of the system (4.2) around its trivial equi-

librium point is given by:

(λ+ d3)(λ+ d2 + γ + qE)[λ2 − (M +N)λ+MN − σ1σ2] = 0

where M = r − σ1 − d1, N = s− σ2 − d1

Clearly, for M + N < 0 and MN − σ1σ2 > 0 i.e, r + s < σ1 + σ2 + 2d1

and rs > σ2r + σ1s + d2
1, all the eigen values of the system become nega-

tive at B0(0, 0, 0, 0), thus the system is locally asymptotically stable around

B0(0, 0, 0, 0).

From the above conditions, it is seen that the trivial equilibrium is locally

asymptotically stable if the birth rates of prey is less than the sum of death

rates and migration rates of prey, i.e, all the species are going to extinct for-

ever, if the birth rates of prey are less than the sum of death rate and migration

rates of prey.

Theorem 4.6.2. The system (4.2) is locally asymptotically stable at the preda-

tor and specialist predator free equilibrium point B1(x1, y1, 0, 0) if ny1
a+y1

< d2 +

γ + qE, (r+ s) < 2d1 + σ1 + σ2 + 2( r
K
x1 + s

L
y1) and (r− 2r

K
x1− σ1− d1)(s−

2s
L
y1 − σ2 − d1) > σ1σ2

Proof: The characteristic equation of the system (4.2) at B1(x1, y1, 0, 0) is

given by:
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(λ+ d3)(λ− ny1
a+y1

+ d2 + γ + qE)[λ2 − (M1 +N1)λ+M1N1 − σ1σ2] = 0

where M1 = r − 2r
K
x1 − σ1 − d1, N1 = s− 2s

L
y1 − σ2 − d1

Clearly, ny1
a+y1

< d2 + γ + qE

for M1 +N1 < 0 i.e, (r + s) < 2d1 + σ1 + σ2 + 2( r
K
x1 + s

L
y1)

and M1N1 − σ1σ2 > 0 i.e, (r − 2r
K
x1 − σ1 − d1)(s − 2s

L
y1 − σ2 − d1) > σ1σ2,

all the eigen values of the system become negative at B1(x1, y1, 0, 0), thus the

system is locally asymptotically stable around B1(x1, y1, 0, 0).

From the above conditions, it is seen that the predator and specialist predator

free equilibrium is locally asymptotically stable if the birth rates of prey is less

than the sum of death rates, migration rates of prey and twice times ratio of

birth rates all over prey populations and carrying capacity of the system, i.e,

all the species are going to extinct forever, if the birth rates of prey are less

than the sum of death rates, migration rates of prey and twice times ratio of

birth rates all over prey populations and carrying capacity of the system.

Now the characteristic equation of system (4.2) around its interior equilibrium

reduces to

λ4 + Aλ3 +Bλ2 + Cλ+D = 0

where

A =
r

K
x̄+

s

L
ȳ + γz̄ + δū+ σ1

x̄

ȳ
+ σ2

ȳ

x̄
− mȳz̄

(a+ ȳ)2
− m1z̄ū

(b+ z̄)2

B = −σ1σ2 +
m1n1bz̄ū

(b+ z̄)3
+

mnaȳz̄

(a+ ȳ)3
+ (r1r2 + r1r3 + r1r4 + r2r3 + r2r4 + r3r4)

C = −(r1r2r3 + r1r3r4 + r1r2r4 + r2r3r4) + σ1σ2(r3 + r4)− m1n1bz̄ū

(b+ z̄)3
(r1 + r2)

− mnaȳz̄

(a+ ȳ)3
(r1 + r4)

D = r1r2r3r4 − σ1σ2r3r4 +
m1n1bz̄ū

(b+ z̄)3
(r1r2 + σ1σ2) +

amnȳz̄

(a+ ȳ)3
r1r4

r1 = − r

K
x̄− σ2

ȳ

x̄
, r2 = − s

L
ȳ − σ1

x̄

ȳ
+

mȳz̄

(a+ ȳ)2

r3 = −γz̄ +
m1z̄ū

(b+ z̄)2
, r4 = −δū

Let us consider, A = c1− nc2, B = c3− nc4, C = c5− nc6, D = c7− nc8. Then

we have BC − AD = Q1n
2 + Q2n + Q3 = ϕ(n) (say), where Q1 = c4c6 −
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c2c8, Q2 = c2c7 + c1c8− c5c4− c3c6, Q3 = c3c5− c1c7 and det

 C D 0
A B C
0 1 A

 =

Q4n
3 + Q5n

2 + Q6n + Q7 = ψ(n) (say), where Q4 = c2
2c8 − c2c4c6, Q5 =

c2c4c5 + c2c3c6 + c1c4c6 − c2
2c7 − 2c1c2c8 − c2

6, Q6 = c2
1c8 + 2c1c2c7 + 2c5c6 −

c2c3c5 − c1c4c5 − c1c3c6, Q7 = c1c3c5 − c2
1c7 − c2

5.

Here all Qj, (j = 1 to 7) are functions of n since the interior equilibrium

depends on n. But for a known parameter set it is possible to find all the

values of Qj in terms of n. In that case, we assume that n is the common

positive root of ϕ(n) = 0 and ψ(n) = 0. Now using Routh-Hurwitz criteria

around the interior equilibrium point, we can state and prove the following

theorem for the local asymptotic stability of the system (4.2).

Theorem 4.6.3. Assuming all Qj (j = 1 to 7), C, BC−AD and

∣∣∣∣∣ C D 0
A B C
0 1 A

∣∣∣∣∣
be positive. Then the equilibrium point B3(x̄, ȳ, z̄, ū) of the system (4.2) is lo-

cally asymptotically stable.

Proof: Using Routh-Hurwitz criterion the conclusion becomes all eigenvalues

of the system (4.2) around its interior equilibrium point B3(x̄, ȳ, z̄, ū) have

negative real parts. Consequently the system will be locally asymptotically

stable. Hence the theorem.

Lemma 2. In the above theorem, we have proved that for a known parameter

set we can find all Qj in terms of n. In this case if n̄ is the only common

positive root. Then for n > n̄, BC −AD and det

 C D 0
A B C
0 1 A

 are positive.

Again if BC −AD and det

 C D 0
A B C
0 1 A

 are negative then the system (4.2)

must be unstable around B3(x̄, ȳ, z̄, ū). Also if det

 C D 0
A B C
0 1 A

 = 0 then

the system (4.2) undergoes through a bifurcation. In next theorem, we describe

about Hopf bifurcation.
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Theorem 4.6.4. The system (4.2) follows Hopf bifurcation about the point

B3(x̄, ȳ, z̄, ū) for n = n̄.

Proof: For n = n̄,

we have det

 C D 0
A B C
0 1 A

 = 0 and then the eigenvalues of the system at

B3(x̄, ȳ, z̄, ū) can be represented as λ1,2 = ±i
√
C1 and λ3,4 = ±i

√
C2.

Considering λ1,2 = φ1(n)± iφ2(n) and λ3,4 = φ3(n)± iφ4(n). Now it is obvious

to show that dφ
dn
6= 0 at the point n = n̄ where φ represents φ1 and φ3. Again,

we have φ(n̄) = 0. Therefore, it is obvious to show that our system (4.2)

follows a Hopf bifurcation at its interior equilibrium for the critical value of

n, i.e, for n = n̄, with the help of given conditions (103). So, the theorem is

obvious.

Prey-predator models with constant parameters are often found to approach

a steady state in which the species coexist in equilibrium. But if parameters

used in the model are changed, other types of dynamical behavior may occur

and the critical parameter values at which such transitions happen are called

bifurcation points. The purpose of this study is to determine the stability

behavior of the system in presence of different density-dependent factors of

the prey-predator interactions. To study the transition of the system with

respect to the small changes in the density dependent factors, we consider, n

as bifurcation parameter and n represent the critical value or the bifurcating

value of the concerned bifurcation parameter.

4.7 Global Stability
We now state and prove the globally asymptotically stability at an interior

equilibrium point with the help of Lyapunov function.

Theorem 4.7.1. The system (4.2) will be globally asymptotically stable at

an interior equilibrium point B3(x̄, ȳ, z̄, ū), if the sufficient conditions that no

trajectory of the solution path meets the coordinate axes and R1(0) > 0, R2(0) >

0 where R1(y) = s
L
− 1

2
(σ2
x̄

+ σ1
ȳ

) − mz̄
(a+y)(a+ȳ)

and R2(z) = γ − m1ū
(b+z)(b+z̄)

,
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r ≥ K
2

(σ2
x̄

+ σ1
ȳ

) hold simultaneously.

Proof: Let us choose a Lyapunov function which is defined as follows

V (x, y, z, u) =
∫ x
x̄
x−x̄
x
dx+ p1

∫ y
ȳ
y−ȳ
y
dy + p2

∫ z
z̄
z−z̄
z
dz + p3

∫ u
ū
u−ū
u
du

where pi(i = 1, 2, 3) are suitable positive constants to be determined in the

following subsequent steps.

Time derivative of the equation along the solutions of the system(4.2) is given

by

dV

dt
=

x− x̄
x

dx

dt
+ p1

y − ȳ
y

dy

dt
+ p2

z − z̄
z

dz

dt
+ p3

u− ū
u

du

dt

= (x− x̄)
{
r
(

1− x

K

)
− σ1 + σ2

y

x
− d1

}
+p1(y − ȳ)

{
s
(

1− y

L

)
+ σ1

x

y
− σ2 − d1 −

mz

a+ y

}
+p2(z − z̄)

{
ny

a+ y
− d2 − γz −

m1u

b+ z
− qE

}
+p3(u− ū)

{
n1z

b+ z
− d3 − δu

}
Again at the interior equilibrium point B3(x̄, ȳ, z̄, ū), ẋ = ẏ = ż = u̇ = 0 i.e,
r − σ1 − d1 = r

K
x̄ − ȳ

x̄
σ2, s − σ2 − d1 = s

L
ȳ − σ1

x̄
ȳ

+ m z̄
a+ȳ

, −d2 − qE =

γz̄ +m1
ū
b+z̄
− n ȳ

a+ȳ
, −d3 = δū− n1

z̄
b+z̄

. Substituting these, we have

dV

dt
= (x− x̄)

{
− r

K
(x− x̄) + σ2

(y
x
− ȳ

x̄

)}
+p1(y − ȳ)

{
− s
L

(y − ȳ) + σ1

(
x

y
− x̄

ȳ

)
−m

(
z

a+ y
− z̄

a+ ȳ

)}
+p2(z − z̄)

{
−γ(z − z̄) + n

(
y

a+ y
− ȳ

a+ ȳ

)
−m1

(
u

b+ z
− ū

b+ z̄

)}
+p3(u− ū)

{
−δ(u− ū) + n1

(
z

b+ z
− z̄

b+ z̄

)}
= −

( r
K

+
σ2y

xx̄

)
(x− x̄)2 − p1

(
s

L
+
σ1x

yȳ
− mz̄

(a+ y)(a+ ȳ)

)
(y − ȳ)2

−p2

(
γ − m1ū

(b+ z)(b+ z̄)

)
(z − z̄)2 +

(
p2

an

(a+ ȳ)
− p1m

)
(y − ȳ)(z − z̄)

(a+ y)

+

(
p3

bn1

b+ z̄
−m1p2

)
(z − z̄)(u− ū)

b+ z
− p3δ(u− ū)2

+

(
σ2

x̄
+ p1

σ1

ȳ

)
(x− x̄)(y − ȳ)
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Assuming that, p1 = 1, p2 = m(a+ȳ)
an

, p3 = mm1(a+ȳ)(b+z̄)
abnn1

Then the above expression becomes as follows:

dV

dt
= −

( r
K

+
σ2y

xx̄

)
(x− x̄)2 −

(
s

L
+
σ1x

yȳ
− mz̄

(a+ y)(a+ ȳ)

)
(y − ȳ)2

−m(a+ ȳ)

an

(
γ − m1ū

(b+ z)(b+ z̄)

)
(z − z̄)2 +

(
σ2

x̄
+
σ1

ȳ

)
(x− x̄)(y − ȳ)

−mm1(a+ ȳ)(b+ z̄)

abnn1

δ(u− ū)2

Now, if no trajectory of the solution path meets the coordinate axes, then we

always have, x/y and y/x are positive. Thus, we have

dV

dt
≤ − r

K
(x− x̄)2 −

(
s

L
− mz̄

(a+ y)(a+ ȳ)

)
(y − ȳ)2

−m(a+ ȳ)

an

(
γ − m1ū

(b+ z)(b+ z̄)

)
(z − z̄)2

+

(
σ2

x̄
+
σ1

ȳ

)
(x− x̄)(y − ȳ)

≤ −

[√
1

2

(
σ2

x̄
+
σ1

ȳ

)
{(x− x̄)− (y − ȳ)}

]2

−
{
r

K
− 1

2

(
σ2

x̄
+
σ1

ȳ

)}
(x− x̄)2

−
{
s

L
− 1

2

(
σ2

x̄
+
σ1

ȳ

)
− mz̄

(a+ y)(a+ ȳ)

}
(y − ȳ)2

−m(a+ ȳ)

an

(
γ − m1ū

(b+ z)(b+ z̄)

)
(z − z̄)2

Since, R1(0) > 0, R2(0) > 0 , r ≥ K
2

(
σ2
x̄

+ σ1
ȳ

)
, then from the above expres-

sion, we conclude that dV
dt
≤ 0. So, the theorem is holds.

Note 4.1: ‘No trajectory meet the co-ordinate axes’ means that the isoclines

would remain always in the positive quadrant and it never goes to any other

quadrant for positive initial conditions and this is an essential criteria for each

and every ecological system.
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4.8 Optimal Control
In economic ground, the fundamental problem regarding the commercial ex-

ploitation of renewable resources is to determine the optimal trade-off between

present and future harvesting. Study of this section emphasises the better

profit of the fisheries. It is thoroughly a study of the optimal harvesting policy

and the profit earned by harvesting. Then we focus on quadratic cost and

conservation of fish population by constraining the latter to stay always above

a critical threshold. Specially, in this chapter, we study on quadratic cost of

harvesting, usually it is taken as linear. The main reason for using quadratic

cost is to obtain an analytical expression for the optimal harvesting. It is as-

sumed that the price function and biomass are inversely proportional. Thus,

to maximize the total discounted net revenues from the fishery, the optimal

control problem can be designed as follows:

J(E) =

∫ t1

t0

e−ηt[(p− ωqEz)qEz − cE]dt (4.9)

where [t0, t1] is the time interval of the observation, p is the constant price

per unit biomass, c denotes the constant cost of harvesting effort, ω denotes

the economic constant and the instantaneous annual discount rate denoted

by η. The problem (4.9), subject to the population of the system (4.2) and

control constraint 0 ≤ E ≤ Emax, can be solved by applying Pontryagin’s

maximum principle (80). The convexity of the objective function with respect

to E, the linearity of the differential equations in the control variable and the

compactness of the range values of the state variables can be combined to give

the existence of the optimal control.

Considering Eδ to be an optimal control with corresponding states xη, yη, zη
and uη, we take Aη(xη, yη, zη, uη) as optimal equilibrium point. Here, it is

interested to derive an optimal control Eη such that

J(Eη) = max{J(E) : E ∈ U},
where U is the control set defined as follows:

U = {E : [t0, t1]→ [0, Emax] , E is the Lebesgue measurable}
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Now the Hamiltonian of this optimal control problem is as follows:

H = (p− ωqEz)qEz − cE + µ1

{
rx
(

1− x

k

)
− σ1x+ σ2y − d1x

}
+µ2

{
sy
(

1− y

L

)
+ σ1x− σ2y − d1y −

myz

a+ y

}
+µ3

{
nyz

a+ y
− d2z − γz2 − m1zu

b+ z
− qEz

}
+µ4

{
n1zu

b+ z
− d3u− δu2

}
(4.10)

where µ1, µ2, µ3 and µ4 are adjoint variables. Here, the transversality condi-

tions give µi(t1) = 0, i = 1, 2, 3, 4.

Now, it is possible to find the characterization of the optimal control Eη, on

the set {t : 0 < Eη(t) < Emax}.
We have ∂H

∂E
= pqz − 2ωq2z2E − c− µ3qz

Thus at Aη(xη, yη, zη, uη), E = Eη(t) and ∂H
∂E

= pqzη−2ωq2z2
ηE−c−µ3qzη = 0.

This implies that,

Eη = pqzη−c−µ3qzη
2ωq2z2η

Now the adjoint equations at the point Aη(xη, yη, zη, uη) are

dµ1

dt
= ηµ1 −

∂H

∂x
|Aη = ηµ1 −

[
µ1

(
r − 2rxη

K
− σ1 − d1

)
+ µ2σ1

]
(4.11)

dµ2

dt
= ηµ2 −

∂H

∂y
|Aη = ηµ2 −

[
µ1σ2 + µ2

{
s− 2syη

L
− σ2 − d1 −

mazη
(a+ yη)2

}
+µ3

nazη
(a+ yη)2

]
(4.12)

dµ3

dt
= ηµ3 −

∂H

∂z
|Aη = ηµ3 −

[
µ3

{
nyη
a+ yη

− d2 − 2γzη −
m1buη

(b+ zη)2
− qE

}
+2ωq2E2zη −

mµ2yη
a+ yη

+ µ4
n1buη

(b+ zη)2

]
− pqE (4.13)

dµ4

dt
= ηµ4 −

∂H

∂u
|Aη = ηµ4 −

[
µ4

{
n1zη
b+ zη

− d3 − 2δuη

}
− µ3

m1zη
b+ zη

]
(4.14)

Equations (4.11) to (4.14) are first order system of simultaneous differential

equations and the analytical solution of the equations with the help of ini-

tial conditions µi(t1) = 0, i = 1, 2, 3, 4 is easily obtained. After that, it is

formulated the optimal control problem through considering fishing effort as

76



4.9. Numerical Simulation

control parameter and the optimal control problem will be numerically solved

using a forward-backward sweep technique of 4th order Runge-Kutta method

to pursue numerical simulations in the later. Based on the above analysis, we

describe the following lemma.

Lemma 3. There exists an optimal control Eη and corresponding solutions

to the system (4.2) xη, yη, zη and uη that maximizes J(E) over U . Also, there

exist adjoint functions µ1, µ2, µ3 and µ4 which satisfy equations (4.11) to (4.14)

respectively, with transversality conditions µi(t1) = 0, i = 1, 2, 3, 4. So, the

optimal control is given by Eη = pqzη−c−µ3qzη
2ωq2z2η

.

4.9 Numerical Simulation
Some arbitrary data have been assumed for describing the analytical results.

Using the MATLAB 7.10 software, we analyze the sensitivity analysis of the

experiments. Again, we see that the parameters introduced in the system are

not taken into consideration from real-life problems, so the prime character-

istics are analyzed by the simulations presented here should be treated from

a qualitative, rather than a quantitative point of view. However, numerous

scenarios covering the breadth of the biological feasible parameter space have

been conducted and the results shown above display the gamut of dynam-

ical results collected from all the scenarios tested. Assuming that parame-

ter set is taken as P1 = {r, s,K, L, σ1, σ2, d1,m, a, n, d2, γ,m1, n1, b, q, E, d3, δ}
= {1.1, 1.2, 30, 40, 0.27, 0.15, 0.3, 0.9, 3.8, 0.8, 0.2, 0.01, 0.3, 0.12, 2.9, 0.3, 0.76, 0.02, 0.02} and

initial point is also taken as B(11, 10, 7, 3). The phase portrait of the system

(4.2) with the parameter set P1 with respect to x, y, z and y, z, u are shown

in the Figures 4.1 and 4.2 respectively. It is seen from the Figures 4.3 and

4.4 that if we consider the system (4.2) with harvesting and migration, then

the system will be stable faster than the system which is considered without

harvesting. From the Figures 4.3 and 4.5, it is seen that when migration is

considered, then the system is stable where as it is unstable when migration

is not considered. So, the proposed model is more realistic than the model
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without migration as well as harvesting. For the existence of the system, the

intrinsic birth rate of prey population in the refuge region and also preda-

tory region has an important role. From Figures 4.6 and 4.7, we see that,

the density of the prey populations in the refuge region as well as predatory

region are directly proportional to the intrinsic birth rate of prey population

in that region. Functional response is most important concept to describe

the prey-predator interaction. Figures 4.8 and 4.9 illustrate the sensitivity of

prey-predator interaction. From the Figures 4.8 and 4.9, it is seen that, m

and a are directly proportional to the density of all the four populations. The

Figure 4.10 shows that the change of n is directly proportional to the density

of predator population and same result for the specialist predator whereas the

change of n is inversely proportional to the density of prey population in the

refuge region and predatory region. Environmental carrying capacity has an

important role for the existence of any population. The sensitivity of envi-

ronmental carrying capacity of prey population in refuge region is described

in Figure 4.11. From Figure 4.11, it is seen that the change of K is directly

proportional to the density of the population. Again, due to the migration

of prey populations between two regions, the increase in the density of prey

in refuge region will be the cause for the decrease of prey population in the

predatory region. Figures 4.12 and 4.13, we see the populations for the change

of the migration and emigration parameters. It is seen in Figure 4.12, the

change of the migration parameter σ1 is directly proportional to the density of

the prey population in the refuge region where as it is inversely proportional

to the density of prey population in the predatory region. Similarly, Figure

4.13 is seen that the change of σ2 is directly proportional to the density of prey

population in the predatory region where as it is inversely proportional to the

density of the prey population in the refuge region. Figure 4.14 shows that,

the natural death rate of predator population d2 is inversely proportional to

the density of the predator and specialist predator populations and directly

proportional to the change of the density of both the prey populations.
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4.10 Chapter Summery
An effect of specialist predator in a prey-predator model with Holling type II

functional response has been introduced and a prey refuge region with har-

vesting effort on predator has been considered. Again a density dependent

mortality rate has been considered for prey, predator and specialist predator.

Also, the different birth rates and different carrying capacities for the prey

populations in the refuge region have been described. In this context, this

research work is significantly different in compare to other works in this area.

In addition, migrations of the prey populations has been included between two

regions. The local as well as global stability around the equilibria have been

discussed. The problem has been illustrated with a numerical example. Also

the proposed model has been analyzed with some geometrical figures. Global

stability of the system is shown by using a suitable analytical approach. It has

been observed that three possible equilibria exist, one is trivial equilibrium

point, one as predator and specialist predator free and the most important

one is the interior equilibrium point. From this study, it has been concluded

that the obtained results are not only feasible to analyze the biological, so-

cial and economic impacts of existing resource, but also provide appropriate

measures to maintain long-run sustainability of the resource.
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4.11 Appendix

R1 =
sr4γ

LK4σ4
2

R2 = γ(b1c5 + a1c6)

R3 = γ(ac6 + a1c5 + b1c4)

R4 = γ(ac5 + a1c4 + b1c3)

R5 = γ(ac4 + a1c3 + c2b1)− nb2
1 + (d1 + qE)b2

1

R6 = γ(ac3 + a1c2 + b1c1)− 2a1b1n+ 2a1b1(d1 + qE)

R7 = γ(ac2 + a1c1)− na2
1 + (d1 + qE)(ab1 + a2

1)

R8 = γac1 + aa1(d1 + qE)

T1 =
sγr4

Lα1K4σ4
2

T2 = (a1c
3
6 + 3b1c5c

2
6)c21

T3 = c21[b1(3c2
5c6 + 3c4c

2
6) + 3a1c5c

2
6] + c20c

3
6

T4 = 3c20c5c
2
6 + c21[a1(3c2

5c6 + 3c4c
2
6) + b1(c3

5 + 6c4c3c6 + 3c3c
2
6)]

T5 = c21[a1(c3
5 + 6c3c4c6 + 3c3c

2
6) + b1(3c4c

2
5 + 3c2

4c6 + 3c2c
2
6 + 6c3c5c6)]

+c20(3c2
5c6 + 3c4c

2
6) + c18b

2
1c

2
6

T6 = c18[2b2
1c5c6 + 2a1b1c

2
6] + c20(c2

5 + 6c4c3c6 + 3c3c
2
6)] + c21[a1(3c4c

2
5

+3c2
4c6 + 3c2c

2
6 + 6c3c5c6) + b1(3c2

4c5 + 3c1c
2
6

+3c3c
2
5 + 6c2c5c6 + 6c3c4c6)]

T7 = c18[a2
1c

2
6 + 4a1b1c6c5 + b2

1(2c4c6 + c2
5)] + c19b1c

2
6 + c20(3c4c

2
5 + 3c2

4c6

+3c2c
2
6 + 6c3c5c6) + c21[a1(3c2

4c5 + 3c1c
2
6 + 6c2c5c6 + 6c3c4c6 + 3c3c

2
5)

+b1(c3
4 + 3c2c

2
5 + 3c2

3c6 + 6c1c5c6 + 6c2c4c6 + 6c3c4c5)]

T8 = c18[2a2
1c5c6 + 2a1b1(2c4c6 + c2

5) + b2
1(2c4c5 + 2c3c6)] + c19(a1c

2
6

+2b1c5c6) + c20(3c2
4c5 + 3c1c

2
6 + 6c2c5c6 + 6c3c4c6 + 3c3c

2
5)

+c21[a1(c3
4 + 3c2c

2
5 + 3c2
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+b1(3c1c
2
5 + 3c3c

2
4 + 3c2

3c5 + 6c2c4c5 + 6c1c4c6 + 6c2c3c6)]
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T9 = −c17c6b
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Figure 4.1: Phase space diagram of the system (4.2) with the parameter set
P1 with respect to x,y,z.
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Figure 4.2: Phase space diagram of the system (4.2) with the parameter set
P1 with respect to y,z,u.
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Figure 4.3: Graphical representation of the system (4.2) with migration and
harvesting.
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Figure 4.4: Graphical representation of the system (4.2) without harvesting.
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Figure 4.5: Graphical representation of the system (4.2) without migration.
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Figure 4.6: Change of x, y, z and u of the system (4.2) with respect
to change of intrinsic birth rate of prey population in refuge region
with parameter set {s,K, L, σ1, σ2, d1,m, a, n, d2, γ,m1, n1, b, q, E, d3, δ} =
{1.2, 30, 40, 0.27, 0.15, 0.3, 0.9, 3.8, 0.8, 0.2, 0.01, 0.3, 0.12, 2.9, 0.3, 0.76, 0.02, 0.02}.
Here (- - -) line corresponds to r = 0.8, (—) line to r = 1.1 and (· · · ) line to
r = 1.3.
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Figure 4.7: Change of x, y, z and u of the system (4.2) with respect
to change of intrinsic birth rate of prey population in predatory region
with parameter set {r,K, L, σ1, σ2, d1,m, a, n, d2, γ,m1, n1, b, q, E, d3, δ} =
{1.1, 30, 40, 0.27, 0.15, 0.3, 0.9, 3.8, 0.8, 0.2, 0.01, 0.3, 0.12, 2.9, 0.3, 0.76, 0.02, 0.02}.
Here (· · · ) line corresponds to s = 0.8, (- - -) line to s = 1.2 and (—) line to
s = 1.4.
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Figure 4.8: Change of x, y, z and u of the system (4.2) with respect to change
of m with parameter set {r, s,K, L, σ1, σ2, d1, a, n, d2, γ,m1, n1, b, q, E, d3, δ}
={1.1, 1.2, 30, 40, 0.27, 0.15, 0.3, 3.8, 0.8, 0.2, 0.01, 0.3, 0.12, 2.9, 0.3, 0.76, 0.02, 0.02}.
Here (- - -) line corresponds to m = 0.9, (—) line to m = 1.5 and (· · · ) line
to m = 2.
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Figure 4.9: Change of x, y, z and u with respect to change of a with
parameter set {r, s,K, L, σ1, σ2, d1,m, n, d2, γ,m1, n1, b, q, E, d3, δ} =
{1.1, 1.2, 30, 40, 0.27, 0.15, 0.3, 0.9, 0.8, 0.2, 0.01, 0.3, 0.12, 2.9, 0.3, 0.76, 0.02, 0.02}.
Here (—) line corresponds to a = 3.8, (· · · ) line to a = 4.5 and (- - -) line to
a = 4.8.
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Figure 4.10: Change of x, y, z and u with respect to change of n with
parameter set {r, s,K, L, σ1, σ2, d1,m, a, d2, γ,m1, n1, b, q, E, d3, δ} =
{1.1, 1.2, 30, 40, 0.27, 0.15, 0.3, 0.9, 3.8, 0.2, 0.01, 0.3, 0.12, 2.9, 0.3, 0.76, 0.02, 0.02}.
Here (· · · ) line corresponds to n = 0.5, (- - -) line to n = 0.6 and (—) line to
n = 0.8.
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Figure 4.11: Change of x, y, z and u with respect to change of K
with parameter set {r, s, L, σ1, σ2, d1,m, a, n, d2, γ,m1, n1, b, q, E, d3, δ} =
{1.1, 1.2, 40, 0.27, 0.15, 0.3, 0.9, 3.8, 0.8, 0.2, 0.01, 0.3, 0.12, 2.9, 0.3, 0.76, 0.02, 0.02}.
Here (—) line corresponds to K = 20, (- - -) line to K = 25 and (· · · ) line to
K = 30.
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Figure 4.12: Change of x, y, z and u with respect to change of σ1

with parameter set {r, s,K, L, σ2, d1,m, a, n, d2, γ,m1, n1, b, q, E, d3, δ} =
{1.1, 1.2, 30, 40, 0.15, 0.3, 0.9, 3.8, 0.8, 0.2, 0.01, 0.3, 0.12, 2.9, 0.3, 0.76, 0.02, 0.02}.
Here (—) line corresponds to σ1 = 0.14, (· · · ) line to σ1 = 0.2 and (- - -) line
to σ1 = 0.27.
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Figure 4.13: Change of x, y, z and u with respect to change of σ2

with parameter set {r, s,K, L, σ1, d1,m, a, n, d2, γ,m1, n1, b, q, E, d3, δ} =
{1.1, 1.2, 30, 40, 0.27, 0.3, 0.9, 3.8, 0.8, 0.2, 0.01, 0.3, 0.12, 2.9, 0.3, 0.76, 0.02, 0.02}.
Here (· · · ) line corresponds to σ2 = 0.15, (—) line to σ2 = 0.4 and (- - -) line
to σ2 = 0.5.
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Figure 4.14: Change of x, y, z and u with respect to change of d2

with parameter set {r, s,K, L, σ1, σ2, d1,m, a, n, γ,m1, n1, b, q, E, d3, δ} =
{1.1, 1.2, 30, 40, 0.27, 0.15, 0.3, 0.9, 3.8, 0.8, 0.01, 0.3, 0.12, 2.9, 0.3, 0.76, 0.02, 0.02}.
Here (- - -) line corresponds to d2 = 0.1, (· · · ) line to d2 = 0.2 and (—) line
to d2 = 0.3.
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