
Chapter 3

Effects on prey-predator with
different functional responses∗

In this chapter, the effects on prey of two predators which are also related

in terms of prey-predator relationship has been investigated. Different type

of functional responses are considered to formulate the mathematical model

for predator and generalist predator of the proposed model. Harvesting effort

for the generalist predator is considered and the density dependent mortality

rate for predator and generalist predator are incorporated. Local stability as

well as global stability for the system are discussed. The different bifurcation

parameters have been analyzed to evaluate Hopf bifurcation in the neighbor-

hood of interior equilibrium point. Finally, some numerical simulations and

graphical figures are provided to verify our analytical results with the help of

different sets of parameters.

3.1 Introduction
The interaction between prey and predator is one of basic interspecies relation-

ship in the biology and ecology. It is also the basic problem of the complicated

food chain, food web and biochemical network structure. In the study of inter-

acting population dynamics, a functional response of predator to prey density

refers to the change in the density of prey per unit time per predator as a
∗A part of this chapter has been appeared in International Journal of Biomathe-

matics, World Scientific, IF: 1.05, 10(8), 1750113 (22 pages), (2017).
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Chapter 3: Effects on prey-predator with different functional responses

function of the prey density. There are mainly three types of functional re-

sponses namely Holling types I, II and III. Type I occurs, when there is a linear

situation to a maximum in the number of prey eaten per predator as prey den-

sity decreases. Again type II occurs, when the response arises at a decreasing

rate towards a maximum value. Finally, type III occurs, when the response

is sigmoid, again approaching an upper asymptote. The subject of harvesting

in prey-predator systems is described as a multi-disciplinary area of research

which considered by economists and ecologists. In many earlier studies, it is

shown that harvesting has a strong impact on population dynamics, ranging

from rapid depletion to complete preservation of biological populations.

They considered only a simple food chain (the number of prey and predator

is only one in this food chain) in their model, but normally in an ecological

system, there are so many species which are interacted to each other. For ex-

ample, in an aquatic ecosystem, so many micro-organisms and fishes are lived.

Fishes live on phytoplankton and zooplankton. Also phytoplankton is eaten

by zooplankton. So, there are more than one prey and their food resources are

different. Again micro-organisms and fishes are belonged in different classes

and functional responses of predator to the prey population are different.

The main motivations of the this chapter are as follows: It is considered that

one species consumes more than one species which are also related in prey-

predator relationship. Also different functional responses are considered as

per class of the different species. In addition to these in the chapter, harvest-

ing effort has been introduced on generalist predator which is more realistic to

analyze the whole system.

3.2 Notation
Table-3.2.1: Description of the parameters.

Parameter Description of the parameters
x Population of prey at time t
y Population of predator at time t
z Population of generalist predator at time t
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3.3. Mathematical model

r Intrinsic growth rate of prey
K Environmental carrying capacity of the prey
α Capture rate of the predator to prey
m Capture rate of the generalist predator to prey
n Capture rate of the generalist predator to predator
a, b1, b2 Half saturation constants
d1 Natural death rate of predator
d2 Natural death rate of generalist predator
β Predator’s consumption rate on prey
n1 Generalist predator’s consumption rate on predator
m1 Generalist predator’s consumption rate on prey

3.3 Mathematical model
Assume that x(t), y(t) and z(t) denote the population of prey, predator and

generalist predator respectively at time t. Fishes live on phytoplankton and

zooplankton. Also, phytoplankton is eaten by zooplankton. Again, fishes are

the member of vertebrata and planktons are member of invertebrates. So the

predator and the generalist predator give different responses on the prey. For

this reason, it has been consider that, the predator population consumes the

prey population with Holling type-II functional response or Michaelis-Menten

functional response which is denoted by x
a+x

; and the generalist-predator pop-

ulation consumes the predator and prey population with Holling type-III func-

tional response, denoted by y2

b2+y2
and x2

b1+x2
respectively. Then the system of

equations in reserve region becomes as follows:

dx

dt
= rx

(
1− x

K

)
− αxy

a+ x
−m x2z

b1 + x2

dy

dt
=

βxy

a+ x
− d1y −

ny2z

b2 + y2

dz

dt
= n1

y2z

b2 + y2
+m1

x2z

b1 + x2
− d2z


(3.1)

with initial conditions x(0) ≥ 0, y(0) ≥ 0, z(0) ≥ 0. Here, we consider b1 and

b2 as saturation constants in functional response of generalist predator in prey

and predator respectively. For the simplification of calculation, we consider
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b1 = b2 = b. Then the system of differential equations (3.1) reduces as follows:

dx

dt
= rx

(
1− x

K

)
− αxy

a+ x
−m x2z

b+ x2

dy

dt
=

βxy

a+ x
− d1y −

ny2z

b+ y2

dz

dt
= n1

y2z

b+ y2
+m1

x2z

b+ x2
− d2z


(3.2)

with initial conditions x(0) ≥ 0, y(0) ≥ 0, z(0) ≥ 0. The growing of human

needs for more food and more energy have led to increase the exploitation of

these resources. Since fishes are harvested for human needs, for this reason

harvesting of fisheries have been drawing more attention in this model. The

harvest rate is denoted as h(t) and it is considered as h(t) = qEz where q

denotes as catchability co-efficient; E denotes the fishing effort used to harvest

of predator population. Thus the system (3.2) rewrites as follows:

dx

dt
= rx

(
1− x

K

)
− αxy

a+ x
−m x2z

b+ x2

dy

dt
=

βxy

a+ x
− d1y −

ny2z

b+ y2

dz

dt
= n1

y2z

b+ y2
+m1

x2z

b+ x2
− d2z − qEz


(3.3)

with initial conditions x(0) ≥ 0, y(0) ≥ 0, z(0) ≥ 0.

3.4 Local stability
In this section, we analyze the stability of the system (3.3) at an interior equi-

librium point B̄(x̄, ȳ, z̄).

Now the characteristic equation of the system (3.3) around its interior equilib-

rium B̄(x̄, ȳ, z̄) is calculated as follows:

λ3 + h1λ
2 + h2λ+ h3 = 0, (3.4)
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3.4. Local stability

where

h1 =
r

K
x̄+mx̄z̄

b− x̄2

(b+ x̄2)2
+ nȳz̄

b− ȳ2

(b+ ȳ2)2
− αx̄ȳ

(a+ x̄)2
,

h2 = nȳz̄
ȳ2 − b

(b+ ȳ2)2

{
αx̄ȳ

(a+ x̄)2
+mx̄z̄

x̄2 − b
(b+ x̄2)2

− r

K
x̄

}
+ aαβ

x̄ȳ

(a+ x̄)3

+2mm1b
x̄3z̄

(b+ x̄2)3
,

h3 = −2nm1bα
x̄2ȳ2z̄

(a+ x̄)(b+ ȳ2)(b+ x̄2)2
+ 2abmn1β

x̄2ȳ2z̄

(b+ x̄2)(a+ x̄)2(b+ ȳ2)2
,

−2nmm1b
x̄3ȳz̄2(ȳ2 − b)

(b+ x̄2)3(b+ ȳ2)2
.

Now we consider hi (i = 1, 2, 3) as h1 = k1 − k2α, h2 = k3 − k4α, h3 =

k5 − k6α with respect to the parameter α, where

k1 =
r

K
x̄+mx̄z̄

b− x̄2

(b+ x̄2)2
+ nȳz̄

b− ȳ2

(b+ ȳ2)2
,

k2 =
x̄ȳ

(a+ x̄)2
,

k3 = nȳz̄
ȳ2 − b

(b+ ȳ2)2

{
mx̄z̄

x̄2 − b
(b+ x̄2)2

− r

K
x̄

}
+ 2mm1b

x̄3z̄

(b+ x̄2)3
,

k4 = nx̄ȳ2z̄
(b− ȳ2)

(a+ x̄)2(b+ ȳ2)2
− aβ x̄ȳ

(a+ x̄)3
,

k5 = 2abmn1β
x̄2ȳ2z̄

(b+ x̄2)(a+ x̄)2(b+ ȳ2)2
− 2nmm1b

x̄3ȳz̄2(ȳ2 − b)
(b+ x̄2)3(b+ ȳ2)2

,

k6 = 2nm1b
x̄2ȳ2z̄

(a+ x̄)(b+ ȳ2)(b+ x̄2)2
.

Now using Routh-Hurwitz criteria around the interior equilibrium point, we

state and prove the following theorem for the local asymptotic stability of the

system (3.3).

Theorem 3.4.1. The system (3.3) will be locally asymptotically stable around

its interior equilibrium point, if min{k1
k2
, k3
k4
, k5
k6
} > α > α∗, where α∗ is the

largest root of the equation ψ(α) = k2k4α
2+(k6−k2k3−k1k4)α+(k1k3−k5) = 0.

Proof: The system will be locally asymptotically stable at the interior equilib-

rium point B(x̄, ȳ, z̄), if Routh-Hurwitz criteria around the interior equilibrium
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point holds.

Using Routh-Hurwitz criteria, we conclude that all the eigen values of the sys-

tem (3.3) contain the negative real part at B̄. i.e., all the roots of the equation

(3.4) have negative real part, i.e., h1, h3 > 0 and h1h2 > h3.

Again h1, h3 > 0 and h1h2 > h3 when min {k1
k2
, k3
k4
, k5
k6
} > α > α∗.

Hence, the system is locally asymptotically stable at the interior equilibrium

point.

This completes the proof of the theorem.

For more analysis from Theorem 3.4.1, we state the following lemma.

Lemma 1. From the above theorem, we can conclude that the system (3.3)

will be locally asymptotically stable for α > α∗ and unstable for α < α∗.

Theorem 3.4.2. The system (3.3) undergoes through a Hopf bifurcation at its

interior equilibrium for α = α∗.

Proof: For α = α∗, we have h1h2 − h3 = 0 and then the eigenvalues of the

system at B̄ can be represented as λ1 = −h1 and λ2,3 = ±i
√
h2. Considering

λ1 = φ1(α) and λ2,3 = φ2(α) ± iφ3(α). Now it is clearly to show that dφ
dα

= 0

at the point α = α∗. Again we have φ(α) = 0. Therefore, it is obvious to show

that our system (3.3) follows a Hopf bifurcation at its interior equilibrium

for the critical value of α, i.e., for α = α∗, with the help of given conditions

(Venkatsubramanian et al. (103)).

So, this suggests the proof of the theorem.

The constant parameters involving in the prey-predator model are generally

described for approaching the steady state where the species coexists in equi-

librium. The dynamical behavior of the model may vary if the parameters

involved in the system are changed and then the values of the critical param-

eters at which such effects happened are known as bifurcation points. The

main aim of this study is to determine the stability behavior of the model due

to presence of various density-dependent factors to the prey-predator interac-

tions. To study the transition of the system with respect to the small changes

46



3.4. Local stability

in the density dependent factors, we consider α, m and n as bifurcation pa-

rameters and α∗, m∗ and n∗ denote the critical values or the bifurcating values

of the concerned bifurcation parameters.

Now we can also choose h1, h2 and h3 with respect to the parameter n, in the

form as

h1 = l1 + l2n, h2 = l3 + l4n and h3 = l5 − l6n, where

l1 =
r

K
x̄+mx̄z̄

b− x̄2

(b+ x̄2)2
− αx̄ȳ

(a+ x̄)2
,

l2 = ȳz̄
b− ȳ2

(b+ ȳ2)2
,

l3 = aαβ
x̄ȳ

(a+ x̄)3
+ 2mm1b

x̄3z̄

(b+ x̄2)3
,

l4 = ȳz̄
ȳ2 − b

(b+ ȳ2)2

{
αx̄ȳ

(a+ x̄)2
+mx̄z̄

x̄2 − b
(b+ x̄2)2

− r

K
x̄

}
,

l5 = 2abmn1β
x̄2ȳ2z̄

(b+ x̄2)(a+ x̄)2(b+ ȳ2)2
,

l6 = 2m1bα
x̄2ȳ2z̄

(a+ x̄)(b+ ȳ2)(b+ x̄2)2
+ 2mm1b

x̄3ȳz̄2(ȳ2 − b)
(b+ x̄2)3(b+ ȳ2)2

.

Theorem 3.4.3. The system (3.3) undergoes through a bifurcation at its inte-

rior equilibrium for n = n∗ where n∗ = l5
l6
provided that n∗ > max{0,− l1

l2
,− l3

l4
}.

Proof: For n = n∗, we have h3 = 0 (where h3 = l5 − l6n). Then the charac-

teristic equation is λ3 + h1λ
2 + h2λ = 0. It can be concluded that from the

equation (3.1), both h1 and h2 are positive since n∗ > max{0,−l1/l2,−l3/l4}.
Consequently, the characteristic equation has a simple zero eigen value around

its interior equilibrium for n = n∗. Hence, the system (3.3) passes through a

bifurcation at n = n∗ around its interior equilibrium point B̄.

Theorem 3.4.4. The system (3.3) also undergoes through a bifurcation at its

interior equilibrium for m = m∗ where m∗ can be obtained by solving h3 = 0

provided m∗ is positive; h1 and h2 are also positive.

Proof: Straight forward.
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3.5 Global stability
Here we consider the general method (Li and Muldowney (58)) to show an

n-dimensional autonomous dynamical system f : D → Rn, D ⊂ Rn, an open

and simply connected set and f ∈ C1(D), where the dynamical system is as

follows:

dx

dt
= f(x) (3.5)

which is globally stable under certain parametric conditions. We refer to the

works of Haque et al. (39), Bunomo et al. (10), Kar and Mondal (50) for

detailed discussion.

Now we consider the conditions as stated in below:

(1) The autonomous dynamical system (3.5) has a unique interior equilibrium

point x̄ in D.

(2) The domain D is simply connected.

(3) There is a compact absorbing set Ω ⊂ D.

The unique interior equilibrium point x̄ in D of the system (3.5) is globally

asymptotically stable if the system is locally asymptotically stable and all the

trajectories in D converges to its interior equilibrium point.

Theorem 3.5.1. The system (3.3) is globally asymptotically stable around its

interior equilibrium point if d2 + qE < µ2, where µ2 = n1
y2

b+y2
+ m1

x2

b+x2
+

min{mxz b−x2
(b+x2)2

+ nyz b−y2
(b+y2)2

− αxy
(a+x)2

+ r
K
x −m x2

b+x2
, mxz b−x2

(b+x2)2
− αxy

(a+x)2
+

r
K
x− βay

(a+x)2
− 2bn1yz

(b+y2)2
, αx
a+x

+ nyz b−y2
(b+y2)2

− 2bn1yz
(b+y2)2

}.

Proof: Let J [2] be the second additive compound matrix with order 3C2×3C2.

Hence, we have,

J [2] =
∂f [2]

∂x
=

 J11 + J22 J23 −J13

J32 J11 + J33 J12

−J31 J21 J22 + J33


Now we introduce the above expression in our system to show that our system

(3.3) will be globally stable around its interior equilibrium point B̄. The system
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of equation (3.3) can be described as below:

dX

dt
= f(X)

where X =

 x
y
z

 and f(X) =

 rx
(
1− x

K

)
− αxy

a+x
−m x2z

b+x2
βxy
a+x
− d1y − ny2z

b+y2

n1
y2z
b+y2

+m1
x2z
b+x2
− d2z − qEz

.

Then

V =
∂f

∂X
=

 mxz x2−b
(b+x2)2

+ αxy
(a+x)2

− r
K
x − αx

a+x
−m x2

b+x2

βay
(a+x)2

nyz y2−b
(b+y2)2

−n y2

b+y2

2m1b
xz

(b+x2)2
2bn1

yz
(b+y2)2

0

 (3.6)

where V (x, y, z) = (Jij)3 be the Jacobian matrix of the system (3.3) at its
interior equilibrium point.

J [2] =


mxz(x2−b)

(b+x2)2 + nyz(y2−b)
(b+y2)2 + αxy

(a+x)2 −
r
Kx − ny2

b+y2
mx2

b+x2

2bn1yz
(b+y2)2

mxz(x2−b)
(b+x2)2 + αxy

(a+x)2 −
r
Kx − αx

a+x

− 2m1bxz
(b+x2)2

βay
(a+x)2

nyz(y2−b)
(b+y2)2


We consider M(X) ∈ C1(D) in such a way that M = diag{x/z, x/z, x/z}.
Then MfM

−1 = diag{ẋ/x− ż/z, ẋ/x− ż/z, ẋ/x− ż/z} and MJ [2]M−1 = J [2],

where matrixMf is obtained by replacing each entityMij ofM by its derivative

in the direction of solution (3.3). In addition, we have

B = MfM
−1 +MJ [2]M−1 =

(
B11 B12

B21 B22

)
,

where Mf is represented by

(Mij(X))f =

(
∂Mij

∂x

)t
f(x) = ∇Mij.f(x), (3.7)

and B11 = ẋ/x− ż/z +mxz x2−b
(b+x2)2

+ nyz y2−b
(b+y2)2

+ αxy
(a+x)2

− r
K
x,

B12 =
(
−n y2

b+y2
m x2

b+x2

)
, B21 =

(
2bn1

yz
(b+y2)2

−2m1b
xz

(b+x2)2

)
,

B22 =

(
ẋ/x− ż/z +mxz x2−b

(b+x2)2
+ αxy

(a+x)2
− r

K
x − αx

a+x
βay

(a+x)2
ẋ/x− ż/z + nyz y2−b

(b+y2)2

)
.

Let (u1, u2, u3) denote the vector in R3, choose a norm in R3 as |u1, u2, u3| =
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max{|u1|, |u2|+ |u3|} and let Γ be the Lozinskii measure (68) of B with respect

to with a vector norm in RN , N =n C2, then we get

Γ(B) = lim
h→0+

|l + hB| − 1

h
. (3.8)

If the conditions (1), (2) and (3) hold then we can write the following inequality

(Li and Muldowney (58)) as:

lim sup sup
1

t

∫ t

0

Γ(B(x(s, x0)))ds < 0. (3.9)

The condition (3.9) ensures that there are no orbits (i.e., homoclinic orbits,

heteroclinic cycles and periodic orbits) which give rise to a simple closed recti-

fiable curve in D, invariant for the system (3.5). It is also a robust Bendixson

criterion. Now, based on the above discussion, we are to show that our sys-

tem (3.3) is globally stable around its interior equilibrium. Then, we have the

following estimate (Li and Muldowney (58)):

Γ(B) ≤ sup{b1, b2}, (3.10)

where b1 = Γ1(B11) + |B12|, b2 = |B21|+ Γ1(B22) and Γ1 denotes the Lozinskii

measure with respect to l1 vector norm, |B12| and |B21| are matrix norms with

respect to l1 norm. Then we get

Γ1(B11) = ẋ/x− ż/z +mxz
x2 − b

(b+ x2)2
+ nyz

y2 − b
(b+ y2)2

+
αxy

(a+ x)2
− r

K
x,

|B12| = m
x2

b+ x2
,

|B21| =
2bn1yz

(b+ y2)2
,

Γ1(B22) =
ẋ

x
− ż

z
+max

{
mxz

x2 − b
(b+ x2)2

+
αxy

(a+ x)2
− r

K
x+

βay

(a+ x)2
,

nyz
y2 − b

(b+ y2)2
− αx

a+ x

}
,

Hence

b1 = ẋ/x− ż/z +mxz
x2 − b

(b+ x2)2
+ nyz

y2 − b
(b+ y2)2

+
αxy

(a+ x)2
− r

K
x+m

x2

b+ x2
,
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and

b2 =
ẋ

x
− ż

z
+

2bn1yz

(b+ y2)2
+max

{
mxz

x2 − b
(b+ x2)2

+
αxy

(a+ x)2
− r

K
x+

βay

(a+ x)2
,

nyz
y2 − b

(b+ y2)2
− αx

a+ x

}
.

Now, using ż
z

= n1
y2

b+y2
+m1

x2

b+x2
−d2−qE from the system (3.3), the expression

becomes,

b1 =
ẋ

x
− n1

y2

b+ y2
−m1

x2

b+ x2
+ d2 + qE +mxz

x2 − b
(b+ x2)2

+ nyz
y2 − b

(b+ y2)2

+
αxy

(a+ x)2
− r

K
x+m

x2

b+ x2
,

and

b2 =
ẋ

x
− n1

y2

b+ y2
−m1

x2

b+ x2
+ d2 + qE +

2bn1yz

(b+ y2)2
+max

{
mxz

x2 − b
(b+ x2)2

+
αxy

(a+ x)2
− r

K
x+

βay

(a+ x)2
, nyz

y2 − b
(b+ y2)2

− αx

a+ x

}
=

ẋ

x
− n1

y2

b+ y2
−m1

x2

b+ x2
+ d2 + qE +

2bn1yz

(b+ y2)2
−min

{
mxz

b− x2

(b+ x2)2

− αxy

(a+ x)2
+

r

K
x− βay

(a+ x)2
,

αx

a+ x
+ nyz

b− y2

(b+ y2)2

}
.

Now, from (3.10) we get

Γ(B) ≤ ẋ

x
− n1

y2

b+ y2
−m1

x2

b+ x2
+ d2 + qE −min

{
mxz

b− x2

(b+ x2)2

+nyz
b− y2

(b+ y2)2
− αxy

(a+ x)2
+

r

K
x−m x2

b+ x2
, mxz

b− x2

(b+ x2)2

− αxy

(a+ x)2
+

r

K
x− βay

(a+ x)2
− 2bn1yz

(b+ y2)2
,
αx

a+ x
+ nyz

b− y2

(b+ y2)2

− 2bn1yz

(b+ y2)2

}
,

i.e.,Γ(B) ≤ ẋ

x
+ d2 + qE − µ2,

where, µ2 = n1
y2

b+y2
+m1

x2

b+x2
+min{mxz b−x2

(b+x2)2
+ nyz b−y2

(b+y2)2
− αxy

(a+x)2
+ r

K
x−

m x2

b+x2
, mxz b−x2

(b+x2)2
− αxy

(a+x)2
+ r

K
x− βay

(a+x)2
− 2bn1yz

(b+y2)2
, αx
a+x

+nyz b−y2
(b+y2)2

− 2bn1yz
(b+y2)2

}.
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i.e.,

1

t

∫ t

0

Γ(B)ds ≤ 1

t
log

x(t)

x(0)
− (g2 − d2).

Therefore,

lim
t→∞

sup sup
1

t

∫ t

0

Γ(B(s, x0))ds < −(µ2 − d2 − qE) < 0, i.e, d2 + qE < µ2.

This shows the proof of the theorem.

3.6 Optimal Control
Here, a harvesting effort is applied to the generalist predator population. Now,

the aim is to calculate the optimal profit in bionomic equilibrium state. The

bionomic equilibrium is a concept of economic equilibrium as well as bio-

logical equilibrium. The net economic revenue obtained from the fishery is

p(x, y, z, E, t) = The total revenue obtained by selling the harvested biomass

− the total cost for the effort devoted to harvesting = pqEz − cE, where p is

the constant price per unit biomass of the generalist predator and c is the con-

stant cost per unit effort, then we consider the present value J of a continuous

time-stream of revenues as

J =

∫ ∞
0

e−δtp(x, y, z, E, t)dt, (3.11)

where δ denotes the instantaneous annual rate of discount (82). Our problem is

to maximize J subject to the state equations (3.3) using Pontryagin’s maximum

principle (80). The control variable E(t) is subject to the constraint set 0 ≤
E ≤ Emax. At first, we construct the corresponding Hamiltonian function as

follows:

H = e−δt(pqz − c)E + λ1

{
rx
(

1− x

K

)
− αxy

a+ x
−m x2z

b+ x2

}
+ λ2

( βxy

a+ x

−d1y −
ny2z

b+ y2

)
+ λ3

(
n1y

2z

b+ y2
+
m1x

2z

b+ x2
− d2z − qEz

)
(3.12)
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where λi (i = 1, 2, 3) are called the adjoint variables.

By Pontryagin’s maximum principle, the adjoint equations are as follows:
dλ1

dt
= −∂H

∂x
= −λ1

{
r − 2

r

K
x− aαy

(a+ x)2
− 2mb

xz

(b+ x2)2

}
−λ2aβ

y

(a+ x)2
− 2λ3m1b

xz

(b+ x2)2
, (3.13)

dλ2

dt
= −∂H

∂y
= λ1

αx

a+ x
+ λ2

{
2nb

yz

(b+ y2)2
− β x

a+ x
+ d1

}
−2λ3n1b

yz

(b+ y2)2
, (3.14)

dλ3

dt
= −∂H

∂z
= −pqEe−δt − λ3

{
n1

y2

b+ y2
+m1

x2

b+ x2
− d2 − qE

}
+λ1m

x2

b+ x2
+ λ2n

y2

b+ y2
. (3.15)

Now we derive an optimal equilibrium solution of the problem at the interior

equilibrium E∗(x∗, y∗, z∗). Then from equations (3.13), (3.14) and (3.15), we

get
dλ1

dt
= λ1A1 − λ2A2 − λ3A3, (3.16)

dλ2

dt
= λ1A4 + λ2A5 − λ3A6, (3.17)

dλ3

dt
= −pqEe−δt + λ1A7 + λ2A8 − λ3A9. (3.18)

where A1 = 2 r
K
x∗+ aαy∗

(a+x∗)2
+2mb x∗z∗

(b+x∗2)2
−r, A2 = aβ y∗

(a+x∗)2
, A3 = 2m1b

x∗z∗

(b+x∗2)2
,

A4 = α x∗

a+x∗
, A5 = n (b−y∗2)y∗z∗

(b+y∗2)2
, A6 = 2n1b

y∗z∗

(b+y∗2)2
, A7 = m x∗2

b+x∗2
, A8 = n y∗2

b+y∗2
,

A9 = 0. Solving these three equations (3.16), (3.17) and (3.18), we get a third

order differential equation in λ1. i.e.,

(D3 +H1D
2 +H2D +H3)λ1 = H4pqEe

−δt (3.19)

where

D ≡ d

dt
H1 = A9 − A1 − A5

H2 = A3A7 + A1A5 + A2A4 − (A1A9 + A5A9 + A6A8)

H3 = A1A5A9 + A1A6A8 + A2A4A9 − (A2A6A7 + A3A5A7 + A3A4A8)

H4 = −(A2A6 + A3A5 + A3δ)
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Using Laplace transform and denoting L(λ1) = λ̄1, we solve the equation (3.19)

and obtain the following result as:

λ̄1 =
H4pqE

(s+ δ)(s3 +H1s2 +H2s+H3)
+

C1(s2 +H1s+H2)

s3 +H1s2 +H2s+H3

+
(s+H1)C2

s3 +H1s2 +H2s+H3

+
C3

s3 +H1s2 +H2s+H3

Where C1 = λ1(0), C2 = λ′1(0) and C3 = λ′′1(0).

Now we consider s3 +H1s
2 +H2s+H3 = (s+ α)(s+ β)(s+ γ) where

∑
α =

H1,
∑
αβ = H2 and αβγ = H3. Then by inverse Laplace transform we get,

λ1 = H4pqE{−
e−αt

(α− β)(α− γ)(α− δ)
+

e−βt

(α− β)(β − γ)(β − δ)

+
e−γt

(α− γ)(−β + γ)(γ − δ)
+

e−δt

(γ − δ)(δ − α)(δ − β)
}

+
e−αt

(α− β)(α− γ)
(C3 −H3C1 − C2α + C2H1)

+
e−βt

(α− β)(β − γ)
(−C3 +H3C1 + C2β − C2H1)

+
e−γt

(α− γ)(β − γ)
(C3 −H3C1 − C2γ + C2H1) + C1

In similar way we can derive the values of λ2 and λ3.

Using the values of λ1, λ2 and λ3, we get Hamiltonian function from (3.12) by

which we can determine the optimality using Pontryagin’s maximum principle.

The numerical illustrations of this system are discussed in the next section.

3.7 Numerical simulation
Some arbitrary data are assumed for describing the analytical results. Using

the MATLAB 7.10 software, we analyze the sensitivity analysis of the experi-

ments. Again, we observe that the parameters involved in the system are not

taken into consideration from real-life problems, so the prime characteristics

are analyzed by the simulations described here should be treated from a qual-

itative rather than a quantitative point of view. However, numerous scenarios

covering the breadth of the biological feasible parameter space are conducted
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and the results shown above display the gamut of dynamical results collected

from all the scenarios tested. Assume that parameter set is taken as

P1 = {r = 1.1;K = 18; a = 6; β = 1.2; b = 7;n1 = 0.9; d1 = 0.3; d2 =

0.12;m1 = 0.2;m = 0.4; q = 0.2;E = 0.76;n = 1.3; } and initial point taken as

B(13, 10, 7). According to our theoretical result, the system is locally asymp-

totically stable for α > α∗ and unstable for α < α∗. For the set of parametric

value P1, from Figures 3.1 and 3.2, we see that for the value of α(= 4.2) > α∗

the system will be stable. Again from Figures 3.3 and 3.4, we observe that for

the value of α(= 3.9) < α∗ the system will be unstable.

It is well known that fish (generalist predator) has an economical demand in

marketing management. Due to this fact, we include the harvesting for general-

ist predator population in the dynamical system. From Figures 3.1 and 3.2 with

the parameter set P2 = {r = 1.1;K = 18; a = 6; β = 1.2; b = 7;n1 = 0.9; d1 =

0.3; d2 = 0.12;m1 = 0.2;m = 0.4; q = 0.2;E = 0.76;α = 4.2;n = 1.3}, here
we observe that system with harvesting is stable after certain time. But when

we consider same parameter set P2 in absence of harvesting i.e., q = 0;E = 0,

then we note that the system is unstable from Figures 3.5 and 3.6. Therefore

from Figures 3.1 and 3.2, we conclude that the system is stable with harvesting

whereas the system is unstable at the same time without harvesting with the

help of Figures 3.5 and 3.6.

For the existence of the system, the intrinsic growth rate of prey population

has an important role. From Figure 3.7, we see that the density of the prey

population is directly proportional to the intrinsic growth rate of prey popu-

lation. The sensitivity of environmental carrying capacity of prey population

is described in Figure 3.8. From Figure 3.8, it is seen that the change of K is

directly proportional to the density of the population. Functional response is

most important concept to describe the prey-predator interaction. Figures 3.9

and 3.10 illustrate the sensitivity of prey-predator interaction. From Figures

3.9 and 3.10, it is seen that α and m are inversely proportional to the density

of three populations. Figure 3.11 shows that the change of β is directly propor-

tional to the density of predator population and same result for the generalist
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predator whereas the change of β is inversely proportional to the density of

prey population. Again from Figures 3.12 and 3.13, it is observed that the

change of n and n1 are directly proportional to the density of prey population

whereas the change of n and n1 are inversely proportional to the density of

predator population and same result for the generalist predator.

Figure 3.14 shows that, the natural death rate of predator population d1 is

inversely proportional to the density of the predator and generalist predator

population and directly proportional to the change of the density of prey pop-

ulation.

3.8 Chapter Summary
Prey-predator model with three species has been described. Here the effects on

a prey of two predators which are also related in a prey-predator relationship

have been considered. Also, different types of functional responses have been

considered for predator and generalist predator. The harvesting effort has

been applied only for the generalist predator. The density-dependent mortality

rates for the predator and generalist predator have been considered. The local

stability as well as global stability for the system at the interior equilibrium

point have been discussed. Different parameters have been considered as a

bifurcation parameter to evaluate Hopf bifurcation in the neighborhood of

interior equilibrium point. With different set of parameters, the model has

been verified through numerical simulations and graphical Figures.
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Figure 3.1: Phase space diagram of the system (3.3) with the parameter set
{r = 1.1;K = 18; a = 6; β = 1.2; b = 7;n1 = 0.9; d1 = 0.3; d2 = 0.12;m1 =
0.2;m = 0.4; q = 0.2;E = 0.76;n = 1.3} and α = 4.2 with respect to x,y and
z.
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Figure 3.2: Graphical representation of the system (3.3) with parameter set
{r = 1.1;K = 18; a = 6; β = 1.2; b = 7;n1 = 0.9; d1 = 0.3; d2 = 0.12;m1 =
0.2;m = 0.4; q = 0.2;E = 0.76;n = 1.3} and α = 4.2.
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Chapter 3: Effects on prey-predator with different functional responses

Figure 3.3: Phase space diagram of the system (3.3) with the parameter set
{r = 1.1;K = 18; a = 6; β = 1.2; b = 7;n1 = 0.9; d1 = 0.3; d2 = 0.12;m1 =
0.2;m = 0.4; q = 0.2;E = 0.76;n = 1.3} and α = 3.9 with respect to x,y,z.

Figure 3.4: Graphical representation of the system (3.3) with parameter set
{r = 1.1;K = 18; a = 6; β = 1.2; b = 7;n1 = 0.9; d1 = 0.3; d2 = 0.12;m1 =
0.2;m = 0.4; q = 0.2;E = 0.76;n = 1.3} and α = 3.9.
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Figure 3.5: Phase space diagram of the system (3.3) in absence of harvesting.

Figure 3.6: Solution curve of the system (3.3) in absence of harvesting.

Figure 3.7: Change of x, y and z of the system (3.3) with respect to change
of intrinsic growth rate of prey population with parameter set {K = 9.8; a =
6; β = 1.2; b = 7;n = 1;n1 = 0.9; d1 = 0.3; d2 = 0.12;m1 = 0.2;m = 0.4; q =
0.2;E = 0.76;α = 1.3; }. Here (—) line corresponds to r = 0.8, (- - -) line to
r = 1.1 and (· · · ) line to r = 1.4.
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Figure 3.8: Change of x, y and z of the system (3.3) with respect to change of
carrying capacity of prey population K with parameter set {r = 1.1; a = 6; β =
1.2; b = 7;n = 1;n1 = 0.9; d1 = 0.3; d2 = 0.12;m1 = 0.2;m = 0.4; q = 0.2;E =
0.76;α = 1.3; }. Here (—) line corresponds to K = 9.8, (- - -) line to K = 12
and (· · · ) line to K = 14.

Figure 3.9: Change of x, y and z of the system (3.3) with respect to change
of α with parameter set {r = 1.1;K = 9.8; a = 6; β = 1.2; b = 7;n = 1;n1 =
0.9; d1 = 0.3; d2 = 0.12;m1 = 0.2;m = 0.4; q = 0.2;E = 0.76; }. Here (—) line
corresponds to α = 1, (- - -) line to α = 1.3 and (· · · ) line to α = 1.6.
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Figure 3.10: Change of x, y and z of the system (3.3) with respect to change
of m with parameter set {r = 1.1;K = 9.8; a = 6; β = 1.2; b = 7;n = 1;n1 =
0.9; d1 = 0.3; d2 = 0.12;m1 = 0.2; q = 0.2;E = 0.76;α = 1.3; }. Here (—) line
corresponds to m = 0.1, (- - -) line to m = 0.4 and (· · · ) line to m = 0.7.
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Figure 3.11: Change of x, y and z of the system (3.3) with respect to change
of β with parameter set {r = 1.1;K = 9.8; a = 6; b = 7;n = 1;n1 = 0.9; d1 =
0.3; d2 = 0.12;m1 = 0.2;m = 0.4; q = 0.2;E = 0.76;α = 1.3; }. Here (—) line
corresponds to β = 0.8, (- - -) line to β = 1.2 and (· · · ) line to β = 1.6.

Figure 3.12: Change of x, y and z of the system (3.3) with respect to change
of n with parameter set {r = 1.1;K = 9.8; a = 6; β = 1.2; b = 7;n1 = 0.9; d1 =
0.3; d2 = 0.12;m1 = 0.2;m = 0.4; q = 0.2;E = 0.76;α = 1.3; }. Here (—) line
corresponds to n = 0.8, (- - -) line to n = 1 and (· · · ) line to n = 1.2.

Figure 3.13: Change of x, y and z of the system (3.3) with respect to change
of n1 with parameter set {r = 1.1;K = 9.8; a = 6; β = 1.2; b = 7;n = 1;n1 =
0.9; d1 = 0.3; d2 = 0.12;m1 = 0.2;m = 0.4; q = 0.2;E = 0.76;α = 1.3; }. Here
(—) line corresponds to n1 = 0.7, (- - -) line to n1 = 0.9 and (· · · ) line to
n1 = 1.1.
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Figure 3.14: Change of x, y and z of the system (3.3) with respect to change
of d1 with parameter set {r = 1.1;K = 9.8; a = 6; β = 1.2; b = 7;n = 1;n1 =
0.9; d2 = 0.12;m1 = 0.2;m = 0.4; q = 0.2;E = 0.76;α = 1.3; }. Here (—) line
corresponds to d1 = 0.2, (- - -) line to d1 = 0.3 and (· · · ) line to d1 = 0.4.
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