2014

M.A.

4th Semester Examination PHILOSOPHY

PAPER-PHI-401 & 405

Full Marks: 40

Time: 2 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

PHI-401

[Advaita Vedanta]

Answer any two questions from Group—A and one question from Group—B.

Group-A

- Is the superimposition (adhyāsa) of self (ātmā) upon not-self (anātmā) possible? Discuss after the Adhyāsa-Bhaṣya of Śaṅkara.
- 2. Explain, after Sankara, the two interpretations of the Brahma-Sutra, sastrayonitvat.

- 3. Discuss how does Sankara refute the Sankhya argument, samanvayāt in favour of prakrttikāranavāda in his commentary on the Brahma-Sutra, racanānupattesca na anumānam
- 4. Write an explanatory note on the Brahma-Sūtra, abhyupagame api arthābhāvāt following its commentary of Sankara.

Group-B

- 5. Distinguish between dharmajijñāsā and brahrmajijñāsā after Sankara 8
- Does the Sutra janmādyasya yataḥ indicate tatastha lakṣmaṇa or svarūpa lakṣmaṇa, or both of Brahman?
 Discuss briefly.
- 7. How does Sankara comment on the Brahma-Sūtra, anyatha-anumitauca jñaśaktiviyogat?

PHI - 405

[Advanced Logic]

Answer any two questions from Group—A and one question from Group—B

Group-A

Answer any two from the following.

- 1. Answer the following questions (any eight) 8×2
 - (i) What is the status of '⊃' in PM System?
 - (ii) State the difference between Monadic and Dyadic operator.
 - (iii) Write down the forms of definitions of [•] and [≡] in PM.
 - (iv) What is a Lemma?
 - (v) Write down the transformations rules in PM?
 - (vi) What is L-based system?
 - (vii) State the following two axioms.
 - a. Axiom of Necessity.
 - b. Axiom of Possibility.
 - (viii) Show that whenever we have $\Gamma(\alpha \prec \beta)$ we can obtain we can obtain $\Gamma(\alpha \supset \beta)$.
 - (ix) State the four distinct truth functions of p.
 - (x) When is a system B stronger than another system, say, A?
- 2. Prove that T system in consistent with respect to ~.
- 3. Prove any four of the following in PM: 4×4
 - (i) $\sim \sim P \supset P$;
 - (ii) $(p \lor (q \lor r)) \supset ((p \lor q) \lor r)$;

(iii)
$$(p \equiv q) \supset ((r \lor p) \equiv (r \lor q));$$

(iv)
$$(p \equiv q) \supset (\sim p \equiv \sim q)$$
.

- 4. Prove any four of the following in T system: 4×4
 - (i) $Lp = \sim M \sim P$;
 - (ii) $(Lp \vee Lq) \supset L(p \vee q)$;
 - (iii) $M(p \cdot q) \supset (Mp \cdot Mq)$;
 - (iv) $((q \prec p) \cdot (\neg q \prec p)) \equiv Lp$;

Group--B

Answer any one question.

5. Explain the basic model notions.

- 8
- 6. (a) Show that if z and w are equivalent so are there negations i.e. that if $\Gamma(z = w)$ then $\Gamma(\sim z = w)$
 - (b) 'If the Lemma holds, so does the rule'. Explain.
 4+4
- 7. Prove any two of the following in PM from the base (amy two): 4×2
 - (i) $p \supset q$;
 - (ii) $p \vee \sim q$;
 - (iii) $(\neg q \supset \neg p) \supset (p \supset q)$. 4+4