2019

B.Sc. (General)

2nd Semester Examination

STATISTICS

Paper - DSC 1BT

Full Marks: 40

Time: 2 Hours

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

- 1. Answer any five out of eight questions: $2 \times 5 = 10$
 - (a) Define a random experiment. Explain with an example.
 - (b) Give the limitations of the classical definition of probability.
 - (c) State the axiomatic definition of probability.
 - (d) Let C_1 and C_2 be two independent events with $P(C_1) = 0.6$ and $P(C_2) = 0.3$. Compute:
 - (i) $P(C_1 \cap C_2)$, (ii) $P(C_1 \cup C_2)$

- (e) Distinguish between a discrete random variable and a continuous random variable.
- (f) Find the constant C so that p(x) satisfies the condition of being a pmf of a random variable x;

$$p(x) = \begin{cases} C\left(\frac{2}{3}\right)^x; x = 1, 2, \dots \\ 0 & \text{elsewhere} \end{cases}$$

- (g) Give the properties of cumulative distribution function.
- (h) State Lindberg Levy Central Limit Theorem.
- 2. Answer any four out of the six questions: $4\times5=20$
 - (a) Show that conditional probability satisfies all the axioms of axiomatic definition of probability. 5
 - (b) Each of four persons fires one shot at a target. Let C_K denote the event that the target is hit by person K, K=1,2,3,4. If C_1 , C_2 , C_3 , C_4 are independent and if $P(C_1)=P(C_2)=07$, $P(C_3)=0.9$ and $P(C_4)=0.4$, compute the probability that:
 - (i) all of them hit the target
 - (ii) exactly one hits the target.

- (c) If C_1 and C_2 are independent events, show that the following pairs of events are also independent: (i) C_1 and C_2^C , (ii) C_1^C and C_2 , (iii) C_1^C and C_2^C .
- (d) Show that Binomial distribution may be approximated by Poisson distribution. (state the conditions to be used).
- (e) Let X be a random variable having exponential distribution with p.d.f.

$$f(x) = \lambda e^{-\lambda x}$$
; $x > 0$

- (i) Find the c.d.f. of X.
- (ii) Also find E(X).

2

- (f) $\{X_n\}$ is a sequence of independent random variables such that $P(X_k = 2^k) = P(X_k = -2^k) = \frac{1}{2}$. Determine if they obey Weak Law of Large Numbers.
- 3. Answer any *one* out of *two* questions : $1 \times 10 = 10$
 - (a) In a certain factory, machines I, II and III are all producing springs of same length. Machines I, II and III produce 1%, 4% and 2% defective springs respectively of the total production of

· L

springs in the factory, Machine I produces 30%, Machine II produces 25% and Machine III produces 45%.

- (i) If one spring is selected at random from the total springs produced in a given day, determine the probability that it is defective.5
- (ii) Given that the selected spring is defective, find the conditional probability that it was produced by Machine II.
- (b) Derive the moment generating function of normal distribution with parameters μ and δ^2 . Hence show that the odd order central moments of the distribution are zero. Also obtain the expression for the even ordered central moments. 4+3+3