Total Pages - 6

UG/2nd Sem/PHYS/G/19(Pr)

2019

B.Sc. (General)

2nd Semester Examination

PHYSICS

Paper - DSC 1BP

[Practical]

Full Marks: 20 Time: 3 Hours

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer any one question:

 $1 \times 5 = 15$

- 1. Determine an unknown low resistance by using a Carey-Foster's fridge.
 - (a) Theory.

2

(b) Circuit diagram and its implementation.

2

(c) Table for the determination of resistance per unit length (ρ) of the bridge wire for at least three sets.

(d)	Table for the determination of the unknown resistance (R) for at least three sets.	vn 4			
(e)	Calculation.	2			
(f)	Accuracy.	1			
Verify the Thevenin and Norton theorems.					
(a)	Statement of the theorems.	2			
(b)	Circuit diagram and its implementation.	2			
(c)	Data for load voltage (V_L) and load current (for at least six different loads.	(_L)			
(d)	Drawing of two separate graphs for two theorems.				
(e)	Verification summary table.	1			
Verify the Superposition theorem.					
(a)	Theory.	3			
(b)	Circuit diagram and its implementation.	2			
(c)	Data for voltage (V) and current (I) when o source is switched on alternatively and be sources are switched on.				
(d)	Calculation.	2			

3.

(e) Verification table.

	4.	Verify the Maximum power transfer theorem.	
		(a) Theory.	3
		(b) Circuit diagram and its implementation.	2
0		(c) Data for load voltage (V_L) and load current (or, load resistance (R_L)) (use at least different loads)	_
		(d) Drawing of P _L - R _L graph.	3
		(e) Calculation.	2
	5.	Determine the capacitance of a given capacitor using an ac source of low frequency (~50Hz).	ng
		(a) Theory.	3
		(b) Circuit diagram and its implementation.	2
		(c) Table for V _R , V _C data for fixed R and fix frequency (for at least five voltages).	ed 5
		(d) Drawing of Vc – I curve.	3
		(e) Determination of capacitance from graph.	1
	×	(f) Accuracy.	1
	6.	Study the response curve of a series LCR circuit.	
		(a) Theory.	3

[Turn Over]

	(b)	Circuit diagram and its implementation.	2
	(c)	Data for current (I) vs. frequency (f) grap at least 10 frequencies).	h (for 5
	(d)	Drawing of I vs. f graph.	3
	(e)	Determination of resonance frequency and q factor.	puality 2
7.		dy the response curve of a parallel LCR c determine the anti-resonance frequency.	ircuit
	(a)	Theory.	3
	(b)	Circuit diagram and its implementation.	2
8	(c)	Data for impedance (Z) vs. frequency (f) a (for at least 10 frequencies).	graph 5
	(d)	Drawing of Z vs. f graph.	3
	(e)	Determination of anti-resonance frequency quality factor.	and 2
8.	Stu- alor	dy the variation of magnetic field strengthing the axis of a solenoid.	ı (B)
	(a)	Theory.	3
	(b)	Circuit diagram and its implementation.	2
	(c)	Measurements of B along the axis of the	given

8.

	solenoid for a fixed current (for at least positions).	10
	(d) Plot of the variation of B along the axis (x).	3
	(e) Determination of $\frac{dB}{dx}$ at two end points and	l at
	the mid point on the axis.	2
9.	Determine an unknown high resistance by the method leakage of charge of a condenser by using ballistic galvanometer. (The natural leakage resistance of the condenser will be supplied by the examine	g a
	(a) Theory.	3
	(b) Circuit diagram and its implementation.	2
	(c) Measurement of first throw (d _o) of the spot light when the fully charged capacitor discharged through the galvanometer.	
	(d) Data for effective resistance (Re).	3
	(e) $\log \log \frac{do}{d}$ vs. t graph.	3
	(Here d is the first throw when a residual chais passed through the galvanometer).	rge 3
	(f) Calculation and accuracy.	2
	[Turn Ova	- 1

10. Laboratory Note Book.

11. Viva-Voce.