
Introduction

In all  areas of biological and medical research,  the role of the computer has been dramatically

enhanced  in  the  last  two  decades.  The  first  generation  of  computational  analysis  focussed  on

sequence analysis, where many highly important unsolved problems remain till date. The current

and future needs will in particular concern with large level integration of extremely diverse sets of

data. These novel types of data originate from a variety of high throughput experimental techniques

of which many are capable of data production at the levels of entire cells, organs, organisms, or

even populations.

These  new, efficient experimental techniques include primarily next-gen DNA sequencing, that

have led to an exponential growth of linear descriptions of protein, DNA and RNA molecules.

Other  new  high  throughput  data  producing  techniques  work  as  massively  parallel  versions  of

traditional experimental methodologies. Genome-wide gene expression measurements

using DNA microrarrays is, in essence, an accumulative simulation of tens of thousands of Northern

blots.  As  a  result,  computational  support  in  experiment  design  ,  processing  of  results  and

interpretation of results has become essential these days to analyse such voluminous data.

As genome and other sequencing projects continue to advance unabated, the emphasis progressively

switches from the accumulation of data to its interpretation.

Sequence data needs to be integrated with structure and function data, with gene expression data,

with  pathways  data,  with  phenotypic  and  clinical  data,  and  so  forth.  Basic  research  within

bioinformatics will have to deal with these issues of system and integrative biology, in the situation

where the amount of data is growing exponentially.

Reconstructing the underlying evolutionary history have become an essential  component of the

research process. This is essential  to our understanding of life and evolution,  as well  as to the

discovery of new drugs and therapies.



Thus  Bioinformatics  has  emerged as  a  strategic  discipline  at  the  frontier  between biology and

computer science, impacting medicine, biotechnology, and society in many ways.

This  is  due  to  the  inherent  complexity  of  biological  systems,  brought  about  by  evolutionary

tinkering, and to our lack of a comprehensive theory of life’s organization at the molecular level.

Machine-learning  approaches  (e.g.  neural  networks,  hidden  Markov  models,  vector  support

machines, belief networks), on the other hand, are ideally suited for domains characterized by the

presence of large amounts of data, “noisy” patterns, and the absence of general theories

The fundamental idea behind these approaches is to learn the theory automatically from the data,

through a process of inference, modelfitting, or learning from examples.

The concept of information and its quantification is essential for understanding the basic principles

of machine-learning approaches in molecular biology.

It is the experience of many people that machine-learning methods are productive in the sense that

near-optimal methods can be developed quite fast, given that the data are relatively clean. Machine

learning is by and large a direct descendant of an older discipline,

statistical model fitting. The major goal in machine learning is to extract useful information from a

corpus of data  by building good probabilistic models.The particular twist behind machine learning,

however,  is  to automate this  process as much as possible,  often by using very flexible models

characterized by large numbers of parameters, and to let the machine take care of the rest.

Machine-learning approaches are best suited for areas where there is a large amount of data but

little  theory.  And  this  is  exactly  the  situation  in  computational  molecular  biology.  We  have

discovered  a  lot  in  the world of  life  science but  we have to  learn much more to  interpret  the

structure, function and philosophy of this world of life. Thus, in computational biology in particular,

and more generally in biology one must reason in the presence of a high degree of uncertainty:

many facts are missing, and some of the concept of information and its quantification is essential

for understanding the basic principles of machine-learning approaches in molecular biology the

facts are wrong. 



Data-driven prediction

The methods employed in machine learning framework should be able to extract essential features

from  individual  examples  and  to  discard  unwanted  information  when  present.  These  methods

should be able to distinguish positive cases from negative ones, also in the common situation where

a huge excess of negative, nonfunctional sites and regions are present in a genome.

Classification  and  prediction  algorithms  are  in  general  computational  means  for  reducing  the

amount of information. The contractive character of these algorithms means that they cannot be

inverted; prediction programs cannot be executed backward and thus return the input information.

Machine-learning approaches may have some advantages over other methods  in having a built-in

robustness when presented with uncorrelated data features. Information reduction is a key feature in

the understanding of almost any kind of system. As described above, a machine-learning algorithm

will create a simpler representation of a sequence space that can be much more powerful and useful

than the original data containing all details.

ARTIFICIAL NEURAL NETWORKS

Artificial neural networks (NNs) were originally developed with the goal of modelling information

processing and learning in the brain. 

An Artificial Neural Network (ANN) is an information processing paradigm that is inspired by the

way biological nervous systems, such as the brain, process information. The key element of this

paradigm is the novel structure of the information processing system. It is composed of a large

number of highly interconnected processing elements (neurons) working in unison to solve specific

problems. ANNs, like people, learn by example. Neural networks, with their remarkable ability to

derive meaning from complicated or imprecise data,  can be used to  extract patterns and detect

trends that are too complex to be noticed by either humans or other computer techniques.  In the

human brain, a typical neuron collects signals from others through a host of fine structures called

dendrites. The neuron sends out spikes of electrical activity through a long, thin stand known as

an axon,  which splits  into thousands of branches.  At the end of each branch, a structure called



a synapse  converts the activity from the axon into electrical effects that inhibit or excite activity

from the axon into electrical effects that inhibit or excite activity in the connected neurons. When a

neuron receives excitatory input that is sufficiently large compared with its inhibitory input, it sends

a spike of electrical activity down its axon. Learning occurs by changing the effectiveness of the

synapses so that the influence of one neuron on another changes. 

An artificial neuron is a device with many inputs and one output. The neuron has two modes of

operation; the training mode and the using mode. In the training mode, the neuron can be trained to

fire (or not), for particular input patterns. In the using mode, when a taught input pattern is detected

at the input, its associated output becomes the current output. If the input pattern does not belong in

the taught list of input patterns, the firing rule is used to determine whether to fire or not.

NNs have become an important tool in the arsenal  of machine-learning techniques that can be

applied to sequence analysis and pattern recognition problems. At the most basic level, NNs can be

viewed  as  a  broad  class  of  parameterized  graphical  models  consisting  of  networks  with

interconnected units evolving in time.

Binomial Classification

If a classification problem has only two classes, A and ¯ A, it is called a binomial classification. For

a given input d, the target output t  is 0 or 1. The natural probabilistic model is a binomial model.

The single output of the network then represents the probability that the input is a member of the

class A or ¯ A, that is the expectation of the corresponding indicator function. This can be computed

by  a  sigmoidal  transfer  function.  Therefore,  in  the  case  of  binomial  classification,  the  output

transfer function should be logistic; the likelihood error function is essentially the relative entropy

between the predicted distribution and the target distribution. The derivative of E with respect to the

total input activity into the output unit, for each example, has the simple expression −(t − y).

Essential genes



The genome of an organism characterizes the complete set of genes that it is capable of encoding.

However,  not  all  of  the  genes  are  transcribed and translated  under  any defined condition.  The

robustness that an organism exhibits to environmental perturbations is partly conferred by the genes

that are constitutively expressed under all the conditions, and partly by a subset of genes that are

induced under the defined conditions.

An essential gene is defined here as a gene necessary for growth to a fertile adult. (Kemphues).

Essential genes of an organism constitute its minimal gene set, which is the smallest possible group

of genes that would be sufficient to sustain a functioning cellular life form under the most favorable

conditions( Kunin et al, Glass et al). The deletion of only one of these genes is sufficient to confer a

lethal  phenotype  on  an  organism  regardless  the  presence  of  remaining  genes.  Therefore,  the

functions  encoded  by  essential  genes  are  crucial  for  survival  and  could  be  considered  as  a

foundation  of  life  itself.  The  identification  of  essential  genes  is  important  not  only  for  the

understanding of the minimal requirements for cellular life, but also for practical purposes. For

example,  since  most  antibiotics  target  essential  cellular  processes,  essential  gene  products  of

microbial cells are promising new targets for such drugs (Sarangi A N, et al). 

In the era of complete genomes, the total number of genes in a sequenced organism can now be

predicted (Claverie), but the function and selective importance of a substantial fraction of genes

remains unknown (Hollon). The conditional importance of genes in conferring robustness can be

understood in the context of the functional attributes of these genes and their correlations to the

defined environmental conditions. However, a priori prediction of such genes for a given condition

is yet not possible.

The prediction and discovery of essential genes have been performed by experimental procedures

such as single gene knockouts, RNA interference and conditional knockouts (Gustafson), but these

techniques require a large investment of time and resources and they are not always feasible.

Considering  these  experimental  constraints,  a  computational  approach  capable  of  accurately

predicting  essential  genes  would  be  of  great  value.  For  prediction  of  essential  genes,  some



investigators have implemented computational approaches in which most are based on sequence

features of genes and proteins with or without homology comparison (Gabriel del Rio et al) . With

the  accumulation of  data  derived  from  experimental  small-scale  studies  and  high-throughput

techniques, however, it is now possible to construct networks of gene and proteins interaction (De la

Rivas J) and then investigate whether the topological properties of these networks would be useful

for predicting essential genes.


