M.Sc. 1st Semester Examination, 2013 MICROBIOLOGY

PAPER -MCB-104

Full Marks: 40

Time: 2 hours

Answer any two questions from each Group

The figures in the right-hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

Illustrate the answers wherever necessary

GROUP - A

[Marks : 20]

Answer any two questions

1. (a) Write the difference between α -helix and β -sheet.

(Turn Over)

3

	(D)	which factor favours their formation	?	2	
	(c)	Give an experimental evidence justifying occurrence of specific bonding among a acids is very essential for restoration proteins function.	amino	5 °	
2.	(a)	Describe the kinetic properties of r substrate inhibition of an enzyme.	nixed	4	
	(b)	Why kinetics of allosteric enzyme is from Michaelis-Menten equation?	differ	4	
	(c)	Write the components of electron tranchain with their Prosthetic group.	isport	2	
3.	Write short notes on (any four): $2\frac{1}{2} \times 4$				
	(<i>i</i>)	Abzyme			
	(ii)	Role of periplasmic binding protein			
	(iii)	G-proteins in signal transduction			
	(iv)	Proton-motive force			
	(v)	Factors affecting fluidity of membran	ne		
PG/I	IS/MCI	3-104/13	(Continu	ed)	

(vi)	Cleavage site for —	
-	(a) Cyanogen bromide	
	(b) Pepsine	
(vii)) Phosphorylation of protein.	
	GROUP – B	
	[Marks : 20]	
	Answer any two questions	
(a)	Why FAD ⁺ (and not NAD ⁺) act as electron donor in succinic dehydrogenase catalysis?	4
(b)	Write down only the oxidative phase of pentose phosphate pathway.	3
(c)	State the importance of transketolase and transaldolase in pentose phosphate pathway.	3
(a)	Describe the steps of phospholipid biosynthesis.	5
(b)	Describe why bacteria and fungus use	

different pathway for lysine biosynthesis.

(c) State the importance of siderophores.

3

2

1.

2.

- 3. Write short notes on (any four):
- $2\frac{1}{2}\times4$
- (i) Hexose phosphoketolase pathway
- (ii) Importance of isoprenoids
- (iii) Brief idea of purine biosynthesis
- (iv) Energy efficiency of Entner Doudoroff Pathway
- (v) Covalent modification of glutamine synthase
- (vi) Enzymes of β -oxidation
- (vii) Cra mediated metabolic control.