
Chapter 7

Multi-objective green solid
transportation-location problem with
dwell time under two-fold uncertainty1

This chapter introduces an unprecedented integrated mathematical model for a green solid
transportation system with dwell time to execute the carbon tax, cap and offset regulation.
Due to market fluctuations, the supply and demand parameters are not always of a crisp
nature. Hence, a two-fold (type-2 intuitionistic) uncertainty is incorporated in this study
to provide a realistic transportation system. A new ranking defuzzification technique is
presented for conversion into a deterministic form. After that, a fuzzy technique and a
non-fuzzy technique are used to get a Pareto-optimal solution of the proposed problem.
The performances of our findings are discussed with industrial-based application examples.
Moreover, a comparative study with particular cases is explored among the other existing
techniques. Managerial insights and conclusions are offered at the end of this study.

7.1 Introduction

We are increasingly witnessing visit outrageous climate incidents because of global warming.
There is a dire requirement for governments, enterprises, the overall population, and aca-
demics to take facilitated activities so as to handle the difficulties forced by environmental
change. The most important strategic issue is to design an effective and environmentally
concerned logistics system as transportation is one of the fundamental reason for carbon
emanations. To reduce carbon discharge, governments and other policymakers endorse a
couple of strategies, wherein the carbon emission tax, cap and offset policy is commonly
accepted. The motivation of this study is to design a strategic green transportation network
to reduce CO2 emission in the atmosphere. FLP and STP are the key factors of logistics net-
work system. Deciding about the optimal locations for the facilities such as retailer-outlets,

1The content of this chapter has been published in IEEE Transactions on Fuzzy Systems, IEEE, SCIE,
I.F: 9.518, 2020, 28(11):2711-2725 https://doi.org/10.1109/TFUZZ.2020.3011745.
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plants, terminals, workplaces, fire stations, railroad stations, etc., and optimizing the overall
logistics cost, customer service level and environmental concerns by different transportation
modes can significantly affect the management system. Therefore, the significance of the
integrated model helps an organization to increase efficiency and decrease the number of
unnatural incidents. Here, an unprecedented mathematical model is introduced by incorpo-
rating FLP and MOSTP under two-fold (type-2 intuitionistic) uncertainty. Consequently,
the stated model is referred as multi-objective green solid transportation-location problem

(MOGST-LP). The aims of the stated formulation are multi-fold: (i) seek the optimum
locations and budgets for potential facilities in the Euclidean plane, (ii) find the amount of
distributed commodities, and (iii) optimize three conflicting objectives such as financial
costs, customers’ satisfaction and carbon emission simultaneously. In the proposed study,
variable carbon emission is considered due to the variable locations of facilities and also
the flows of conveyed goods. It is believed that the designed transportation model will be
more relevant for recent environmental concerns. Nowadays, the parameters of MOGST-LP
are vague because of insufficient information from the DM. For that reason, the proposed
problem is difficult to handle by conventional solution procedures. Therefore, here, a novel
4-dimensional type-2 trapezoidal fuzzy number with the degree of hesitation is introduced
to overcome the uncertainties in a green solid transportation system. For more explanations
of the type-2 fuzzy environment, one may see to the Chapter 1.

The major contributions of this chapter may be listed as:

A1. An unprecedented nonlinear mathematical formulation based on FLP and multi-
objective solid green logistics modeling under a carbon tax, cap and offset policy is
presented.

A2. The formulation provides a decision regarding the assignment from numerous existing
sites to several potential sites in the Euclidean plane with a distance function.

A3. The overall logistics cost including maintaining and fixed charge cost, transportation
time with dwell, loading and unloading time, and carbon emission cost by different
modes of transportation are also considered.

A4. Variable budget constraints are incorporated to find the optimal budgets of the potential
facilities, a novel contribution in this direction.

A5. A new form of trapezoidal type-2 fuzzy number is introduced to handle the uncertain-
ties, which is defuzzified by a proposed ranking function.

A6. A fuzzy technique and a non-fuzzy technique are described to achieve the best Pareto-
optimal solution of MOGST-LP.
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7.2 Preliminaries

Herein, some preliminaries about the type-2 fuzzy set, IFS and intuitionistic fuzzy number

(IFN) are presented subsequently. Type-1 fuzzy set or the classical fuzzy set was the
beginning of fuzzy logic. Thereafter, Zadeh [170] gave the idea of a type-2 fuzzy set (T2FS).

Definition 7.1 Type-2 fuzzy set: Let us consider that F̃ [0,1] be the universe of all fuzzy sets

in [0,1]. A T2FS ˜̃E in the universe X is characterized by a function µ ˜̃E : X → F̃ [0,1]. There-

fore, ˜̃E can be represented as ˜̃E =
{(

x,µ ˜̃E(x)
)

: ∀ x ∈ X ,∀µ ˜̃E(x) ∈ F̃ [0,1]
}

. According to

Mendel and John [106], ˜̃E can be expressed as ˜̃E =
{
((x,u),µẼ(x,u)) : ∀ x ∈ X ,∀ u ∈ Jx ⊆

[0,1],0 < µẼ(x,u)< 1
}

, where x,u are the primary and secondary variables, respectively,

and Jx,µẼ(x,u) are known as primary and secondary membership grades.

Definition 7.2 Intuitionistic fuzzy set (Atanassov [8]): Let X be a universal set and x ∈
X. An IFS Ĉ in X is described by a set of ordered triplet as the following form Ĉ =

{⟨x,µĈ(x),γĈ(x)⟩ : x ∈ X}, where the functions µĈ(x) : X → [0,1] and γĈ(x) : X → [0,1]
denote the degree of membership and non-membership, respectively, such that 0 ≤ µĈ(x)+

γĈ(x)≤ 1, ∀ x ∈ X. Furthermore, 1−µĈ(x)− γĈ(x) represents the degree of hesitation of x

in Ĉ.

Definition 7.3 Trapezoidal intuitionistic fuzzy number (TIFN) (Li [89]): A trapezoidal
type-1 IFN, or simply the TIFN, D̂ is denoted as D̂ = ⟨(ζ1,ζ2,ζ3,ζ4); µD̂,γD̂⟩, with the
membership and non-membership functions as given below:

µD̂(x) =



αD̂

(
x−ζ1

ζ2 −ζ1

)
, if ζ1 ≤ x < ζ2,

αD̂, if ζ2 ≤ x < ζ3,

αD̂

(
ζ4 − x
ζ4 −ζ3

)
, if ζ3 ≤ x < ζ4,

0, if x < ζ1 or x > ζ4,

, γD̂(x) =



ζ2 − x+βD̂(x−ζ1)

ζ2 −ζ1
, if ζ1 ≤ x < ζ2,

βD̂, if ζ2 ≤ x < ζ3,
x−ζ3 +βD̂(ζ4 − x)

ζ4 −ζ3
, if ζ3 ≤ x < ζ4,

1, if x < ζ1 or x > ζ4.

Here, αD̂ and βD̂ are the degree of membership and non-membership such that αD̂,βD̂ ∈
[0,1] and 0 ≤ αD̂ +βD̂ ≤ 1.

7.2.1 Trapezoidal type-2 intuitionistic fuzzy number (TT2IFN)

Here, we present a two-fold uncertainty environment based on the concepts of TIFN and
type-2 fuzzy set. Thereafter, its definition and arithmetic operations are also addressed. The
choice of two-fold uncertainty plays a vital role in the scenario of the proposed problem
due to the attributes of trapezoidal fuzzy numbers. The stated fuzzy number can handle
both symmetric and asymmetric uncertainties, is more acceptable to formulate a real-life
problem.

Definition 7.4 Trapezoidal type-2 intuitionistic fuzzy number (TT2IFN):
A TT2IFN ˜̃A in X is the following form:

˜̃A = ⟨(Â1, Â2, Â3, Â4);ω1 ˜̃A,ω2 ˜̃A⟩, (7.1)
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where Â1, Â2, Â3 and Â4 are also TIFNs, and ω1 ˜̃A and ω2 ˜̃A denote the membership and

non-membership degree of ˜̃A, respectively. Thus, (7.1) can be expressed as
˜̃A =

〈
(Â1, Â2, Â3, Â4);ω1 ˜̃A,ω2 ˜̃A

〉
,

=
〈(
⟨(a11,a12,a13,a14); µÂ1

,γÂ1
⟩,⟨(a21,a22,a23,a24); µÂ2

,γÂ2
⟩,

⟨(a31,a32,a33,a34); µÂ3
,γÂ3

⟩,⟨(a41,a42,a43,a44); µÂ4
,γÂ4

⟩
)
;ω1 ˜̃A,ω2 ˜̃A

〉
,

where ω1 ˜̃A = min{µÂ1
,µÂ2

,µÂ3
,µÂ4

}, ω2 ˜̃A = max{γÂ1
,γÂ2

,γÂ3
,γÂ4

}.

Arithmetic Operations on TT2IFNs:
Let us consider that

˜̃A =
〈(
⟨(a11,a12,a13,a14); µÂ1

,γÂ1
⟩,⟨(a21,a22,a23,a24); µÂ2

,γÂ2
⟩,

⟨(a31,a32,a33,a34); µÂ3
,γÂ3

⟩,⟨(a41,a42,a43,a44); µÂ4
,γÂ4

⟩
)
;ω1 ˜̃A,ω2 ˜̃A

〉
and ˜̃B =

〈(
⟨(b11,b12,b13,b14); µB̂1

,γB̂1
⟩,⟨(b21,b22,b23,b24); µB̂2

,γB̂2
⟩,

⟨(b31,b32,b33,b34); µB̂3
,γB̂3

⟩,⟨(b41,b42,b43,b44); µB̂4
,γB̂4

⟩
)
;ω1 ˜̃B,ω2 ˜̃B

〉
be two TT2IFNs, and ρ be any real number. Then, the arithmetic operations (i.e., addition,
subtraction and scalar multiplication) of these two numbers are as follows:

Addition:
˜̃A⊕ ˜̃B =

〈(
⟨(a11 +b11,a12 +b12,a13 +b13,a14 +b14); µÃ1

∧µB̂1
,γÂ1

∨ γB̂1
⟩,

⟨(a21 +b21,a22 +b22,a23 +b23,a24 +b24); µÂ2
∧µB̂2

,γÂ2
∨ γB̂2

⟩,

⟨(a31 +b31,a32 +b32,a33 +b33,a34 +b34); µÂ3
∧µB̂3

,γÂ3
∨ γB̂3

⟩,

⟨(a41 +b41,a42 +b42,a43 +b43,a44 +b44); µÂ4
∧µB̂4

,γÂ4
∨ γB̂4

⟩
)
;ω1( ˜̃A⊕ ˜̃B),ω2( ˜̃A⊕ ˜̃B)

〉
,

where, ω1( ˜̃A⊕ ˜̃B) = min{µÂ1
∧µB̂1

,µÂ2
∧µB̂2

,µÂ3
∧µB̂3

,µÂ4
∧µB̂4

}, ω2( ˜̃A⊕ ˜̃B) =

max{γÂ1
∨ γB̂1

,γÂ2
∨ γB̂2

,γÂ3
∨ γB̂3

,γÂ4
∨ γB̂4

}.

Subtraction:
˜̃A⊖ ˜̃B =

〈(
⟨(a11 −b44,a12 −b43,a13 −b42,a14 −b41); µÂ1

∧µB̂4
,γÂ1

∨ γB̂4
⟩,

⟨(a21 −b34,a22 −b33,a23 −b32,a24 −b31); µÂ2
∧µB̂3

,γÂ2
∨ γB̂3

⟩,

⟨(a31 −b24,a32 −b23,a33 −b22,a34 −b21); µÂ3
∧µB̂2

,γÂ3
∨ γB̂2

⟩,

⟨(a41 −b14,a42 −b13,a43 −b12,a44 −b11); µÂ4
∧µB̂1

,γÂ4
∨ γB̂1

⟩
)
;ω1( ˜̃A⊖ ˜̃B),ω2( ˜̃A⊖ ˜̃B)

〉
,

where, ω1( ˜̃A⊖ ˜̃B) = min{µÂ1
∧µB̂4

,µÂ2
∧µB̂3

,µÂ3
∧µB̂2

,µÂ4
∧µB̂1

}, ω2( ˜̃A⊖ ˜̃B) =

max{γÂ1
∨ γB̂4

,γÂ2
∨ γB̂3

,γÂ3
∨ γB̂2

,γÂ4
∨ γB̂1

}.

Multiplication with Scalar:

ρ
˜̃A =



⟨
(
⟨(ρa11,ρa12,ρa13,ρa14); µÂ1

,γÂ1
⟩,⟨(ρa21,ρa22,ρa23,ρa24); µÂ2

,γÂ2
⟩,

⟨(ρa31,ρa32,ρa33,ρa34); µÂ3
,γÂ3

⟩,⟨(ρa41,ρa42,ρa43,ρa44); µÂ4
,γÂ4

⟩
)
;ω1 ˜̃A,ω2 ˜̃A

〉
,

if ρ ≥ 0,

⟨
(
⟨(ρa41,ρa42,ρa43,ρa44); µÂ4

,γÂ4
⟩,⟨(ρa31,ρa32,ρa33,ρa34); µÂ3

,γÂ3
⟩,

⟨(ρa21,ρa22,ρa23,ρa24); µÂ2
,γÂ2

⟩,⟨(ρa11,ρa12,ρa13,ρa14); µÂ1
,γÂ1

⟩
)
;ω1 ˜̃A,ω2 ˜̃A

〉
,

if ρ < 0.
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7.2.2 Proposed defuzzification technique

Defuzzification of fuzzy number plays a significant role to overcome the uncertainties in real-
life applications. In fact, several techniques such as α-cut, linguistic approach, critical value
(CV) based reduction, integration method, etc., exist for defuzzification in the literature. In
the study (Roy and Bhaumik [133]), an efficient defuzzification technique is presented to
extract a triangular fuzzy number by addressing a ranking function, and it is applied on a
water management problem. Motivated through this technique, we introduce a new ranking
function for conversion of TT2IFNs into crisp number. The ranking function maps each
TT2IFN into real line, i.e., R : F( ˜̃A)→ R, where F( ˜̃A) is a set of TT2IFNs. Therefore, the
ranking function for TT2IFN is mathematically defined as follows:

R( ˜̃A) =

(
ω1 ˜̃A +ω2 ˜̃A

2

)(
1
4

)(
a11 +a21 +a31 +a41

4
+

a12 +a22 +a32 +a42

4

+
a13 +a23 +a33 +a43

4
+

a14 +a24 +a34 +a44

4

)
, (7.2)

where ˜̃A is given in (7.1). Let ˜̃A and ˜̃B are two TT2IFNs. Then,

1. R( ˜̃A)>R( ˜̃B)⇒ ˜̃A >R
˜̃B, i.e., min{ ˜̃A, ˜̃B}= ˜̃B,

2. R( ˜̃A)<R( ˜̃B)⇒ ˜̃A <R
˜̃B, i.e., min{ ˜̃A, ˜̃B}= ˜̃A,

3. R( ˜̃A) =R( ˜̃B)⇒ ˜̃A =R
˜̃B, i.e., min{ ˜̃A, ˜̃B}= ˜̃A or ˜̃B.

7.3 Mathematical identification

In this section, we initially delineate the stated problem, that is, the green multi-objective
solid transportation-location problem with dwell time under two-fold uncertainty. In this
regard, we incorporate the notations and state the assumptions to formulate the mathematical
model.

7.3.1 Background

Herein, an unprecedented strategic formulation is investigated from an environmental, eco-
nomical and customers’ satisfaction frame of reference. This study deals with a solid green
logistics framework, which comprises of multiple suppliers treated as existing facilities,
destinations or demand points addressed as potential facilities, and commodities are dis-
tributed from some suppliers to certain demand points via different transportation modes.
The important goals are: (G1) reduce the overall conveyance cost, time, and carbon emission
cost under a carbon reduction policy, and (G2) find the optimal locations and budgets for
potential sites simultaneously. Apart from the aforementioned objectives, the following
postures are also taken into consideration: (A) the weights of the conveyances are based on
fuel consumption, considered in the logistics cost and carbon emission cost, (B) processing



116 Multi-objective green solid transportation-location problem under two-fold uncertainty

charge, toll charges, packaging charges, safety expenses and so on, designated as fixed-
charge cost (C) maintenance costs of the vehicles which depend on the distance of the path,
(D) there might be a few barriers (e.g., bridge crossing, broken-down in the way and so on)
in the path which affect the transportation time, considered as dwell time, (E) loading and
unloading time of goods, which increase the accuracy level of the delivery time, (F) total
budget of a potential site depends on the location as well as transported goods, regarded as a
decision variable, (G) follow the Kyoto Protocol (2007) for controlling CO2 emission due to
transportation, reduce the carbon footprint. The main aim of this research is to formulate
and resolve a green logistics modeling by taking extreme weather events into consideration
for controlling CO2 emission.

7.3.2 Notations and Assumptions

The following notations and assumptions are required to state the proposed model:

Sets

I Set of sources considered as existing facilities indexed by i,

J Set of destinations assumed as potential facilities indexed by j,

K Set of transportation modes indexed by k,

W {(wi jk) : ∀ i, j,k}: the feasible space,

W B {(wB
i jk) : ∀ i, j,k}: the optimal feasible set,

F R2p ×W , where (x,y) ∈ R2p and w ∈W , the feasible set.

Decision variables

wi jk Unknown amount to be distributed from ith source to jth destination by kth different
transportation modes,

(x j,y j) Coordinate of jth destination,

B′
j Total budget at jth destination,

η
(
wi jk

)
=

{
1, if wi jk > 0,
0, otherwise.

Parameters

m Number of sources,

n Number of destinations,

p Number of transportation modes,



7.3 Mathematical identification 117

q Number of objective functions,

(ui,vi) Coordinate of ith source,

˜̃ai Availability of ith source in TT2IFN,

˜̃b j Demand at jth destination in TT2IFN,

˜̃ck Capacity of kth transportation mode in TT2IFN,

αi In a location problem, the DM may put more importance of the source with respect to
transportation cost, expressed as weight. Therefore, with each ith source, we associate
a weight αi,

βi Nonnegative weight of ith source with respect to transportation time,

εk Per unit fuel cost of kth transportation mode,

δk There may be used kth different transportation modes to distribute the goods. Depend-
ing on their fuel consumption (machine performance), the weight δk is assigned,

t ′k kth conveyance time for per unit distance to distribute the item,

ti jk Dwell time for kth vehicle from ith source to jth destination,

li Loading time of the products at ith source,

l′j Unloading time of the goods at jth destination,

Mk Maintenance cost of kth vehicle for per unit distance,

fi jk Fixed-charge cost (for example, processing charge, toll charges, loading and unloading
charges, packaging charges, safety expenses, so on) to transport goods from ith source
to jth destination by kth vehicle,

ek Per unit carbon emission by kth conveyance,

γ Tax for each unit of carbon emission,

C Carbon emission cap (i.e., limited capacity of carbon emission permit),

Pc Penalty cost per unit emitted in excess of the cap,

Uq Upper bound of the q objective function,

Lq Lower bound of the q objective function.

There are the following functions and assumptions:

• di j =
√

(ui − x j)2 +(vi − y j)2: Euclidean distance function between ith source and
jth destination.
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• φk(ui,vi;x j,y j) = εk
√

(ui − xi)2 +(vi − y j)2 +δk: transportation cost function per
unit item from ith source to jth destination by kth conveyance.

• ψk(ui,vi;x j,y j)= t ′k
√

(ui − xi)2 +(vi − y j)2: transportation time function for the prod-
uct from ith source to jth destination by kth conveyance.

• ϕk(ui,vi;x j,y j) = ek
√

(ui − xi)2 +(vi − y j)2 +δk: carbon emission function per unit
transported item from ith source to jth destination by kth conveyance.

• The solution space where the facilities are situated in the continuous planner surface.
Furthermore, the facility plants are considered as Euclidean points. There does not
exist any connection between the potential facilities.

• The facility sites have some capacity. The supply, demand and conveyance parameters
are TT2IF nature. The distances are assumed as the Euclidean metric in the plane
surface.

• The distributed commodity is the homogeneous type. The nature of transportation
modes is heterogeneous. Transportation cost is directly proportional to the unit of
shipped commodities.

• The time to transport goods between two points on the network is proportional to the
Euclidean distance. The carbon emission is dependent on the distance traveled by the
conveyances and their fuel consumption.

7.3.3 Model formulation

Here, a mathematical model is introduced in the light of green activities, FLP, MOSTP and
dwell time. The supply, demand and conveyance parameters are considered as TT2IFNs.
This formulation finds the distributed commodities, optimum locations and budgets for the
potential facilities at the same time. The mathematical model of MOGST-LP along with
carbon tax and offset policy can be stated as follows:
Model 7.1

minimize Z1(x,y,w) = ∑
i∈I

∑
j∈J

∑
k∈K

[
αiwi jkφk

(
ui,vi;x j,y j

)
+Mkdi jη

(
wi jk

)]
+∑

i∈I
∑
j∈J

∑
k∈K

fi jkη
(
wi jk

)
(7.3)

minimize Z2(x,y,w) = ∑
i∈I

∑
j∈J

∑
k∈K

[
βiψk

(
ui,vi;x j,y j

)
+ ti jk

]
η
(
wi jk

)
+∑

i∈I
∑
j∈J

∑
k∈K

(
li + l′j

)
wi jk (7.4)
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minimize Z3(x,y,w) = γ ∑
i∈I

∑
j∈J

∑
k∈K

wi jkϕk
(
ui,vi;x j,y j

)
+Pc

(
∑
i∈I

∑
j∈J

∑
k∈K

wi jkϕk
(
ui,vi;x j,y j

)
−C

)+

(7.5)

subject to ∑
j∈J

∑
k∈K

wi jk ≤ ˜̃ai ∀ i, (7.6)

∑
i∈I

∑
k∈K

wi jk ≥ ˜̃b j ∀ j, (7.7)

∑
i∈I

∑
j∈J

wi jk ≤ ˜̃ck ∀ k, (7.8)

∑
i∈I

˜̃ai ≥ ∑
j∈J

˜̃b j and ∑
k∈K

˜̃ck ≥ ∑
j∈J

˜̃b j, (7.9)

wi jk ≥ 0 and η
(
wi jk

)
∈ {0,1} ∀ i, j,k, (7.10)

∑
i∈I

∑
k∈K

[
αiφk

(
ui,vi;x j,y j

)
wi jk +Mkdi jη

(
wi jk

)
+ γϕk

(
ui,vi;x j,y j

)
wi jk

+ fi jkη
(
wi jk

)]
+Pc

(
∑
i∈I

∑
k∈K

wi jkϕk(ui,vi;x j,y j)−C
)+ ≤ B′

j ∀ j. (7.11)

Here,
(
∑
i∈I

∑
j∈J

∑
k∈K

wi jkϕk
(
ui,vi;x j,y j

)
−C
)+

=max
(
∑
i∈I

∑
j∈J

∑
k∈K

wi jkϕk
(
ui,vi;x j,y j

)
−C,0

)
=

{
∑i∈I ∑ j∈J ∑k∈K wi jkϕk

(
ui,vi;x j,y j

)
−C, if ∑i∈I ∑ j∈J ∑k∈K wi jkϕ(ui,vi;x j,y j)≥C,

0, otherwise.
The economic objective function (7.3) aims to determine the optimum positions for the
potential facilities which minimize the overall logistics cost. Terms 1-3 of (7.3) represent
the total transportation cost, maintenance cost and fixed-charge cost from ith source to jth

destination using kth conveyance, respectively. The objective function (7.4) is related to
customers’ satisfaction, which intents to reduce the overall conveyance time, dwell time, and
loading and unloading time from ith source to jth destination via kth vehicle. The objective
function (7.5) is connected with environmental aspects, which indicates to optimize the total
carbon emission cost under tax and offset policy by determining the optimum locations for
the facilities. Constraints (7.6) enforce that the overall distributed quantity of each source
must be less or equal to its capacity. Constraints (7.7) impose that the overall shipped units of
each destination fulfill the demand. Constraints (7.8) demonstrate that the overall transported
flows of each transportation mode cannot surpass its ability. Constraints (7.9) refer to the
feasibility criterion of the problem. Constraints (7.10) are the non-negativity conditions and
binary restrictions. Ultimately, Constraints (7.11) ensure that the total expenditure of jth

destination under a carbon tax and offset regulation is not higher than the optimal budget.

7.3.4 Deterministic formulation

Type-2 intuitionistic fuzzy MOGST-LP model cannot be directly solved due to the existence
of TT2IFNs as supply, demand and conveyance parameters. Therefore, a ranking defuzzifica-
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tion technique is introduced (see Subsection 7.2.2) for conversation of Type-2 intuitionistic
fuzzy MOGST-LP (i.e., Model 7.1) into a deterministic MOGST-LP (i.e., Model 7.2).
Model 7.2

minimize Z1(x,y,w) = ∑
i∈I

∑
j∈J

∑
k∈K

[
αiwi jkφk

(
ui,vi;x j,y j

)
+Mkdi jη

(
wi jk

)]
+∑

i∈I
∑
j∈J

∑
k∈K

fi jkη
(
wi jk

)
minimize Z2(x,y,w) = ∑

i∈I
∑
j∈J

∑
k∈K

[
βiψk

(
ui,vi;x j,y j

)
+ ti jk

]
η
(
wi jk

)
+∑

i∈I
∑
j∈J

∑
k∈K

(
li + l′j

)
wi jk

minimize Z3(x,y,w) = γ ∑
i∈I

∑
j∈J

∑
k∈K

wi jkϕk
(
ui,vi;x j,y j

)
+Pc

(
∑
i∈I

∑
j∈J

∑
k∈K

wi jkϕk
(
ui,vi;x j,y j

)
−C

)+

subject to ∑
j∈J

∑
k∈K

wi jk ≤R
(

˜̃ai
)

∀ i, (7.12)

∑
i∈I

∑
k∈K

wi jk ≥R
(

˜̃b j

)
∀ j, (7.13)

∑
i∈I

∑
j∈J

wi jk ≤R
(

˜̃ck
)

∀ k, (7.14)

∑
i∈I

R
(

˜̃ai
)
≥ ∑

j∈J
R
(

˜̃b j

)
and ∑

k∈K
R
(

˜̃ck
)
≥ ∑

j∈J
R
(

˜̃b j

)
, (7.15)

the constraints (7.10) to (7.11).

Now, the objective function (7.5) illustrates that, based on the carbon cap, there are two
feasible regions. The first one arises when ∑i∈I ∑ j∈J ∑k∈K wi jkϕk

(
ui,vi;x j,y j

)
≤ C. And

the second occurs when ∑i∈I ∑ j∈J ∑k∈K wi jkϕk
(
ui,vi;x j,y j

)
≥C.

The following model is formulated for Case 1:
Model 7.2.1

minimize Z1(x,y,w) = ∑
i∈I

∑
j∈J

∑
k∈K

[
αiwi jkφk

(
ui,vi;x j,y j

)
+Mkdi jη

(
wi jk

)]
+∑

i∈I
∑
j∈J

∑
k∈K

fi jkη
(
wi jk

)
minimize Z2(x,y,w) = ∑

i∈I
∑
j∈J

∑
k∈K

[
βiψk

(
ui,vi;x j,y j

)
+ ti jk

]
η
(
wi jk

)
+∑

i∈I
∑
j∈J

∑
k∈K

(
li + l′j

)
wi jk

minimize Z3(x,y,w) = γ ∑
i∈I

∑
j∈J

∑
k∈K

wi jkϕk
(
ui,vi;x j,y j

)
(7.16)

subject to the constraints (7.10) and (7.12) to (7.15),

∑
i∈I

∑
j∈J

∑
k∈K

wi jkϕk
(
ui,vi;x j,y j

)
≤C, (7.17)
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∑
i∈I

∑
k∈K

[
αiwi jkφk

(
ui,vi;x j,y j

)
+
(
Mkdi j + fi jk

)
η
(
wi jk

)]
+γ ∑

i∈I
∑
k∈K

wi jkϕk(ui,vi;x j,y j)≤ B′
j ∀ j. (7.18)

The Case 2 can be expressed by the model as stated below:
Model 7.2.2

minimize Z1(x,y,w) = ∑
i∈I

∑
j∈J

∑
k∈K

[
αiwi jkφk

(
ui,vi;x j,y j

)
+Mkdi jη

(
wi jk

)]
+∑

i∈I
∑
j∈J

∑
k∈K

fi jkη
(
wi jk

)
minimize Z2(x,y,w) = ∑

i∈I
∑
j∈J

∑
k∈K

[
βiψk

(
ui,vi;x j,y j

)
+ ti jk

]
η
(
wi jk

)
+∑

i∈I
∑
j∈J

∑
k∈K

(
li + l′j

)
wi jk

minimize Z3(x,y,w) = (γ +Pc)∑
i∈I

∑
j∈J

∑
k∈K

wi jkϕk
(
ui,vi;x j,y j

)
−PcC (7.19)

subject to the constraints (7.10) and (7.12) to (7.15),

∑
i∈I

∑
j∈J

∑
k∈K

wi jkϕk
(
ui,vi;x j,y j

)
≥C, (7.20)

∑
i∈I

∑
k∈K

[
αiwi jkφk

(
ui,vi;x j,y j

)
+
(
Mkdi j + fi jk

)
η
(
wi jk

)]
+(Pc + γ)∑

i∈I
∑
k∈K

wi jkϕk(ui,vi;x j,y j)−PcC ≤ B′
j ∀ j. (7.21)

Definition 7.5 Ideal solution: An ideal solution of Model 7.2.1 (or, Model 7.2.2) is the one

which reduces each of the goal independently, i.e., Zq(x∗,y∗,w∗) = min(x,y,w)∈F Zq(x,y,w),

q = 1,2,3.

Definition 7.6 Anti-ideal solution: A solution (xA,yA,wA) ∈ F of Model 7.2.1 (or, Model

7.2.2) is called an anti-ideal solution if it satisfies the condition Zq(xA,yA,wA) =

max(x,y,w)∈F Zq(x,y,w), q = 1,2,3.

Definition 7.7 Pareto-optimal solution: A solution (xP,yP,wP) ∈ F is said to be a Pareto-
optimal solution (otherwise called non-dominated solution, non-inferior or efficient solution)

of Model 7.2.1 (or, Model 7.2.2) if and only if there is no other solution (x,y,w) ∈ F such

that

Zq(x,y,w)≤ Zq(xP,yP,wP) for q = 1,2,3, and

Zq(x,y,w)< Zq(xP,yP,wP) for at least one q.

7.4 Solution techniques

The proposed formulation is the MOGST-LP with type-2 intuitionistic fuzzy parameter.
Introducing ranking index to TT2IFN parameters, the model is transformed into a deter-
ministic MOGST-LP (i.e., Model 7.2). In a multi-objective problem, the DM needs to
optimize the conflicting objective functions simultaneously. For that reason, it is difficult to
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choose an optimal point where all the objective functions obtain their optimum values. Thus,
we have to discover a Pareto optimal solution. In the literature, there exist several fuzzy
and non-fuzzy methodologies like fuzzy programming [91], global criterion method [139],
goal programming approach [137], weighted goal programming [140], ε-constraint method
[139], interactive algorithm [128], intuitionistic fuzzy programming [138], neutrosophic
compromise programming [129] and fuzzy goal programming [51] for solving a multi-
objective problem. All the previously mentioned techniques aside from fuzzy programming,
global criterion method, intuitionistic fuzzy programming, and neutrosophic compromise
programming need not require prior information on objectives (goals and weights) from the
DM for solving the problem. Among four techniques, fuzzy programming and global crite-
rion method provide a simple mathematical structure that makes it easier for understanding
and employing. Moreover, the two techniques always give a Pareto optimal solution within a
relatively short computational time and memory with respect to the other techniques. Fuzzy
programming and global criterion method utilize the idea of the shortest distance from
the ideal point to find a Pareto optimal solution; the techniques need not require any prior
information on objective functions from the DM. In order to solve Model 7.2, we adopt a
fuzzy approach, namely, a fuzzy programming and a non-fuzzy approach, specifically, a
global criterion technique. Again, Model 7.2 is divided into two parts depending on the
carbon cap as Model 7.2.1 and Model 7.2.2, respectively. Afterwards, two models are solved
independently to extract Pareto-optimal solutions. Thereafter, the solutions are compared
to find the optimal solution of Model 7.2. Nevertheless, if one of two models (i.e., Models
7.2.1 and 7.2.2) has a Pareto-optimal solution and the other has no feasible solution, then
the Pareto-optimal solution of the corresponding model is the optimal solution of Model 7.2.
The schematic diagram of the proposed problem and its solution techniques is displayed in
Figure 7.1.

7.4.1 Fuzzy programming

After applying fuzzy programming (Li and Lai [91]), the simplified fuzzy optimization
model of MOGST-LP (i.e., Model 7.2) can be described to derive a Pareto-optimal solution
as stated below:
Model 7.3 (For Model 7.2.1)

maximize λ

subject to Zq(x,y,w)+λ (Uq −Lq)≤Uq, q = 1,2,3,

the constraints (7.10), and (7.12) to (7.15),

the constraints (7.17) and (7.18),

λ ≥ 0;
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Model 7.4 (For Model 7.2.2)

maximize λ

subject to Zq(x,y,w)+λ (Uq −Lq)≤Uq, q = 1,2,3,

the constraints (7.10) and (7.12) to (7.15),

the constraints (7.20) and (7.21),

λ ≥ 0.

Here, λ is the level of satisfaction of a solution, λ = min{µ
(
Zq(x,y,w)

)
: q = 1,2,3}. The

µ
(
Zq(x,y,w)

)
is a membership function corresponding to each qth objective function which

is defined as follows:

µ
(
Zq(x,y,w)

)
=


1, Zq(x,y,w)≤ Lq,
Uq−Zq(x,y,w)

Uq−Lq
, Lq ≤ Zq(x,y,w)≤Uq,

0, Zq(x,y,w)≥Uq.

Moreover, Uq = max{Z1q,Z2q,Z3q}, Lq = Zqq and Zlq := Zq

(
(x,y,w)(l)

)
, q = 1,2,3. For

more explanation of this technique, we refer to the study (Li and Lai [91]).

Proposition 7.1 Let us assume that (xP,yP,wP,λ ) be an optimal solution of Model 7.3

(Model 7.4), then it is also a Pareto-optimal solution (xP,yP,wP) of Model 7.2.1 (Model

7.2.2).

Proof. The proof of the proposition is evident, keeping the references of the evidences of
Lemma 5.3 (cf. Chapter 5) and Proposition 6.2 (cf. Chapter 6). �

7.4.2 Global criterion method

After employing global criterion method (Roy et al. [139]), the mathematical model of
MOGST-LP (i.e., Model 7.2) can be formulated as:
Model 7.5 (For Model 7.2.1)

minimize

 3

∑
q=1

(
Zq(x,y,w)−Zmin

q

Zmax
q −Zmin

q

)2
 1

2

subject to the constraints (7.10), and (7.12) to (7.15),

the constraints (7.17) and (7.18);

Model 7.6 (For Model 7.2.2)

minimize

 3

∑
q=1

(
Zq(x,y,w)−Zmin

q

Zmax
q −Zmin

q

)2
 1

2

subject to the constraints (7.10), and (7.12) to (7.15),

the constraints (7.20) and (7.21).

Here, Zmin
q and Zmax

q are the ideal and anti-ideal solutions of qth objective function, respec-
tively. The readers may follow the article (Roy et al. [139]) for detailed explanations of the
above method.
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Proposition 7.2 Let us assume that (xP,yP,wP) be an optimal solution of Model 7.5 (Model

7.6), then it should be also a Pareto-optimal solution (xP,yP,wP) of Model 7.2.1 (Model

7.2.2).

Proof. This proposition can be proved by contradiction. Let us assume that (xP,yP,wP)

be an optimal solution of Model 7.5 (Model 7.6) which is not a Pareto-optimal solution
of Model 7.2.1 (Model 7.2.2). Subsequently, there exists a solution (x′,y′,w′) such that
(x′,y′,w′) dominates (xP,yP,wP). It implies 3

∑
q=1

(
Zq(x′,y′,w′)−Zmin

q

Zmax
q −Zmin

q

)2
 1

2

<

 3

∑
q=1

(
Zq(xP,yP,wP)−Zmin

q

Zmax
q −Zmin

q

)2
 1

2

which directly contradicts to the fact that (xP,yP,wP) is an optimal solution of Model 7.5
(Model 7.6). This completes the proposition. �

Fig. 7.1: Schematic diagram of the overall scenario.
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7.5 Application examples

In order to validate the proposed model and solution techniques, here, two industrial-based
application examples are presented.
Example 1 (In plant location): Here, we consider that an industrial organization wishes
to begin a couple of firms with the goal of reducing the overall logistics cost, the delivery
time with dwell time and carbon emission cost under the tax, cap and offset regulation. For
simplicity, it is considered that the organization has four (04) supplier firms and he/she wants
to establish two (02) new firms. He/She transports the goods from existing firms to potential
firms by mode of conveyances. Products are transported by two (02) different conveyances.
For that reason, the non-negative weights of fuel consumption by different conveyances are
also taken into cost and emission functions. Under tax, cap and offset regulation, a carbon
emission cap (C) is provided for the organization. When the organization discharges less
than the cap C, then he/she can only pay the usual tax per unit emission. However, when the
organization emits more than the cap, he/she has to pay an offset as a penalty along with
the usual carbon tax. Supportive hypothetical data of this phenomenon are designed. The
fixed-charge cost and dwell time parameters are displayed in Table 7.1. Supply, demand and
conveyance type-2 fuzzy parameters and their crisp values are as follows:

˜̃a1 =
〈(
⟨(170,175,185,190);0.65,0.1⟩,⟨(180,185,195,200);0.7,0.2⟩,

⟨(190,195,205,210);0.7,0.2⟩,⟨(195,200,205,215);0.8,0.1⟩
)
;0.6,0.2

〉
,

R
(

˜̃a1
)

= 77.625;

˜̃a2 =
〈(
⟨(150,156,158,160);0.7,0.1⟩,⟨(155,161,163,168);0.6,0.4⟩,

⟨(160,166,168,173);0.6,0.3⟩,⟨(166,170,175,180);0.7,0.3⟩
)
;0.6,0.4

〉
,

R
(

˜̃a2
)

= 82.156;

˜̃a3 =
〈(
⟨(115,145,150,170);0.8,0.1⟩,⟨(125,155,175,180);0.75,0.1⟩,

⟨(135,145,165,195);0.8,0.2⟩,⟨(150,160,170,180);0.6,0.1⟩
)
;0.6,0.2

〉
,

R
(

˜̃a3
)

= 62.875;

˜̃a4 =
〈(
⟨(80,91,95,100);0.8,0.2⟩,⟨(85,95,105,110);0.85,0.1⟩,

⟨(90,99,115,120);0.9,0.1⟩,⟨(110,120,130,135);0.6,0.3⟩
)
;0.6,0.3

〉
,

R
(

˜̃a4
)

= 47.25;
˜̃b1 =

〈(
⟨(165,195,200,220);0.65,0.25⟩,⟨(175,205,225,230);0.7,0.3⟩,

⟨(185,195,215,245);0.5,0.5⟩,⟨(200,210,220,230);0.8,0.1⟩
)
;0.5,0.5

〉
,

R
(

˜̃b1

)
= 103.593;

˜̃b2 =
〈(
⟨(190,200,210,220);0.4,0.5⟩,⟨(200,210,220,230);0.5,0.5⟩,

⟨(210,220,230,240);0.8,0.2⟩,⟨(270,275,285,290);0.9,0.1⟩
)
;0.4,0.5

〉
,

R
(

˜̃b2

)
= 104.062;
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˜̃c1 =
〈(
⟨(190,195,205,210);0.7,0.3⟩,⟨(200,205,215,220);0.8,0.1⟩,

⟨(210,215,225,230);0.85,0.1⟩,⟨(205,220,225,235);0.7,0.2⟩
)
;0.7,0.3

〉
,

R
(

˜̃c1
)

= 106.406;

˜̃c2 =
〈(
⟨(220,225,235,240);0.75,0.25⟩,⟨(230,235,245,250);0.6,0.3⟩,

⟨(240,245,255,260);0.8,0.1⟩,⟨(245,250,255,265);0.6,0.4⟩
)
;0.6,0.4

〉
,

R
(

˜̃c2
)

= 121.719.

Table 7.1: Fixed-charge cost and dwell time ( fi jk, ti jk).

Source-Destination Conveyance (k = 1) Conveyance (k = 2)
1−1 (120,15) (250,10)
1−2 (45,12) (90,10)
2−1 (200,10) (300,5)
2−2 (180,20) (190,40)
3−1 (145,30) (150,0)
3−2 (260,0) (290,60)
4−1 (300,5) (400,20)
4−2 (350,25) (400,15)

Here, the other input parameters are taken as stated subsequently:
Carbon emission tax γ = 5; Penalty cost Pc = 7; Maintenance cost M1 = 0.5, M2 = 0.1;
Fuel consumption rate δ1 = 0.5, δ2 = 0.7; Fuel cost ε1 = 30, ε1 = 40; Conveyance time
t ′1 = 1.5, t ′2 = 2.5; Carbon emission rate e1 = 0.2, e2 = 0.4; Loading time l1 = 60, l2 = 40,
l3 = 30, l4 = 25; Unloading time l′1 = 30, l′2 = 15; Locations of the sources (u1,v1) = (1,1),
(u2,v2) = (70,7), (u3,v3) = (90,70), (u4,v4) = (10,50); Weights of the source points
α1 = 0.2, α2 = 0.4, α3 = 0.1, α4 = 0.3, β1 = 0.3, β2 = 0.5, β3 = 0.1, β4 = 0.1; Carbon
emission cap C = 1500.

Example 2 (In plant location): Here, we consider the carbon emission cap C = 800, and
the others parameters remain the same as in Example 1.

7.6 Result and discussion

In this section, the Pareto-optimal solutions of Model 7.2 are derived by employing a fuzzy
technique and a non-fuzzy technique. The solution techniques are coded in LINGO 17.0.79
optimization tool on a MacBook Air computer with the configuration 1.8 GHz Intel Core i5,
8 GB RAM. The optimal solutions of both the examples are given in Tables 7.2-7.3. The
steps of solution techniques are shown in Figures 7.2-7.3.
From Table 7.2, we conclude that the solution obtained from the proposed global criterion
method is better in comparison with the solution which is received by the fuzzy programming.
However, from Table 7.3, we notice that it happens exactly the opposite one. Therefore, the
comparison of the proposed two techniques is not likely. In fact, the DM has a choice to pick
any one of the solution techniques according to the circumstance of the problem. Moreover,
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Table 7.2: The Pareto-optimal solution of Example 1.

Optimal solution of Model 2
Solution tech-
nique

Solution of Model 2.1 Average CPU
time (s)

Memory
(K)

Solution of
Model 2.2

Fuzzy program-
ming

λ = 0.714, Z1 = 25740.85,
Z2 = 13450.696, Z3 = 4810.478,
B′

1 = 24318.52, B′
2 = 8648.487,

(x1,y1) = (1.189,1,650),
(x2,y2) = (70.015,7.047),
w112 = 58.198, w221 = 39.105,
w222 = 43.05, w311 = 14.418,
w321 = 21.906, w411 = 30.976,
and remaining all wi jk = 0.

0.32 84 No feasible so-
lution

Global criterion Z1 = 23909.661,
Z2 = 13225.287, Z3 = 4537.228,
B′

1 = 21893.02, B′
2 = 8878.958,

(x1,y1) = (9.892,49.195),
(x2,y2) = (70.025,7.077),
w111 = 52.894, w222 = 82.156,
w311 = 3.449, w321 = 21.906,
w411 = 28.157, w412 = 19.093,
and remaining all wi jk = 0.

0.33 77 No feasible so-
lution

Boldface indicates the optimal solution.

Table 7.3: The Pareto-optimal solution of Example 2.

Optimal solution of Model 2
Solution tech-
nique

Solution of
Model 2.1

Solution of Model 2.2 Average CPU
time (s)

Memory
(K)

Fuzzy program-
ming

No feasible so-
lution

λ = 0.847, Z1 = 39373.227,
Z2 = 12307.214, Z3 = 12452.79,
B′

1 = 38763.93, B′
2 = 24439.49,

(x1,y1) = (78.083,67.009),
(x2,y2) = (69.907,6.991),
w121 = 21.906, w222 = 82.156,
w311 = 43.782, w312 = 19.093,
w411 = 40.718, and remaining all
wi jk = 0.

0.27 84

Global criterion No feasible so-
lution

Z1 = 43361.27, Z2 = 12940.23,
Z3 = 18293.65, B′

1 =
25302.96, B′

2 = 38170.42,
(x1,y1) = (9.887,49.389),
(x2,y2) = (80.561,40.268),
w111 = 56.343, w221 = 41.187,
w321 = 8.876, w322 = 53.999,
w412 = 47.25, and remaining all
wi jk = 0.

2.07 71

Boldface indicates the optimal solution.

the analytical results reveal that the financial, customers’ satisfaction and environmental
objectives are optimized, and the optimum locations and budgets of the new facilities are also
found. We explore that if the cap is larger than the threshold, then an organization will select
the cheaper conveyances which emit more carbon. For this fact, the total transportation cost,
as well as carbon emission cost decrease as he/she has to pay only the usual carbon emission
tax no excess offset. Because of that, he/she will make more benefit. Again if the margin is
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Fig. 7.2: Graphical representation of the global criterion for Example 1.

Fig. 7.3: Pictorial diagram of the fuzzy programming for Example 2.

less than the total emission, the organization chooses the costly conveyances which emit
less. Therefore, the total conveyances cost as well as carbon emission cost increase as he/she
has to give an offset as a penalty, which will reduce his/her profit. For this reason, the
organization will always be concerned about carbon emission due to the transportation of
goods. Additionally, he/she can invest in carbon offset projects to increase its carbon cap.
Afterwards, the carbon policy not only helps the organization to choose optimal decisions
for improving their economic performance but also supports the policymaker for reducing
carbon emission.
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7.7 A comparative study with particular cases

Here, we consider a few particular cases of our problem so that a comparison can be drawn
with the existing studies. They are as follows; (I) the locations of the facilities are known,
then the Euclidean functions are converted into constants, (II) consider all parameters in crisp
number, (III) goods are transported by one kind of conveyance, and (IV) fixed-charge cost,
maintenance cost, carbon emission, dwell time, loading and unloading time are not taken
into consideration. With these particular cases, the stated problem translates into an MOTP.
For more mathematical details of MOTP, we refer to Rizk-Allah et al. [129]. Thereafter, a
numerical example is adopted from Rizk-Allah et al. [129].

Example 3 (In transportation): The input data are as follows:
Supply: a1 = 5, a2 = 4, a3 = 2, a4 = 9; Demand: b1 = 4, b2 = 4, b3 = 6, b4 = 2, b5 = 4.
The coefficients of three objectives are as listed below:

C1 =


9 12 9 6 9
7 3 7 7 5
6 5 9 11 3
6 8 11 2 2

 , C2 =


2 9 8 1 4
1 9 9 5 2
8 1 8 4 5
2 8 6 9 8

 , C3 =


2 4 6 3 6
4 8 4 9 2
5 3 5 3 6
6 9 6 3 1

 .
Therefore, the optimal solution obtained by the proposed and existing techniques is displayed
in Table 7.4. From this Table 7.4, we conclude that the proposed approaches provide a
good Pareto-optimal solution with respect to the others. Besides, the proposed methods give
convenient mathematical structures, which always yield Pareto-optimal solutions with less
computational burden and memory.

Table 7.4: Comparison between proposed and others existing approaches.

Solution techniques Z1 Z2 Z3 Average CPU time (s) Memory (K)
Global criterion 126.958 104.33 75.835 0.08 30
Fuzzy programming 124.98 103.76 79.04 0.10 30
Roy and Midya [138] 125 104 79.047 0.35 40
Rizk-Allah et al. [129] 132 100 76 0.40 50
El-Wahed and Lee [51] 126.79 103.10 77.52 0.65 70
Ringuest and Rinks [128] 127 104 76 0.80 75

Boldface indicates the optimal solution of the proposed techniques.

7.8 Sensitivity analysis

Here, we check the resiliency of Pareto-optimal solutions in MOGST-LP by changing the
parameters values. For MOGST-LP, the complexity occurs when the ranges are calculated
after parametric changes to the object that the obtained Pareto-optimal solutions still remains
the same. Indeed, the difficulty enlarges when the decision variables and restrictions are
large in number. Because of that, a simple procedure is already carried out in Chapter 3 (see
Section 3.5) to analyze the sensitivity of parameters. Here, the same steps (Steps 1- 4) are
repeated to obtain the validity ranges of the parameters in MOGST-LP.
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Sensitivity analysis for supply, demand and capacity parameters:
Let us consider that ai be converted to a∗i (i = 1,2,3,4), b j be changed to b∗j ( j = 1,2) and ck

be changed to c∗k (l = 1,2). Using the steps, the values of a∗i , b∗j and c∗k are easily computed,
which are displayed in Tables 7.5-7.6. In fact, the ranges of the alternate parameters in
MOGST-LP are likewise achieved comparably.

Table 7.5: The range of supply, demand and capacity parameters of Example 1.

Real values of ai, b j and ck Ranges of ai, b j and ck
a1 = 77.625 77.625 ≤ a∗1 ≤ 100
a2 = 82.156 77.9 ≤ a∗2 ≤ 84.3
a3 = 62.875 22.5 ≤ a∗3 ≤ 70.6
a4 = 47.25 47.25 ≤ a∗4 ≤ 65.5
b1 = 103.593 103.593 ≤ b∗1 ≤ 120.5
b2 = 104.062 103 ≤ b∗2 ≤ 110
c1 = 106.406 106.406 ≤ c∗1 ≤ 130.2
c2 = 121.719 101.3 ≤ c∗2 < ∞

Table 7.6: The range of supply, demand and capacity parameters of Example 2.

Real values of ai, b j and ck Ranges of ai, b j and ck
a1 = 77.625 36.7 ≤ a∗1 < ∞

a2 = 82.156 70.1 ≤ a∗2 ≤ 89.9
a3 = 62.875 62.875 ≤ a∗3 ≤ 80.1
a4 = 47.25 47.25 ≤ a∗4 ≤ 60.9
b1 = 103.593 103.593 ≤ b∗1 ≤ 125.5
b2 = 104.062 104.062 ≤ b∗2 ≤ 115.9
c1 = 106.406 106 ≤ c∗1 ≤ 135.5
c2 = 121.719 101.3 ≤ c∗2 < ∞

7.9 Managerial insights

Profitable and vital managerial insights are received through this research, which would be
valuable to the different kinds of governmental and private organizations associated with
the logistics system. From the outcome, organizations can select the best Pareto-optimal
solution when Model 7.2 is decomposed into two sub-models. In fact, organizations may
determine the best potential sites so that they can distribute the commodities with the stated
objectives. A brief discussion of the impact of CO2 emission under a carbon tax, cap and
offset policy is analyzed. From that analysis, organizations are able to understand when their
profit will be less (more). Accordingly, they can adjust their benefits and environmental
awareness, which may lead to a gain of reputation in the worldwide market. On the other
hand, the fuel consumption of the vehicles is displayed in conveyance cost and emission
functions. In cases where the fuel consumption is less, then the overall logistics cost along
with carbon discharge will be reduced. Hence, organizations can easily select which kinds
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of vehicles are most suitable for distributing products. Once more, the dwell time for the
barriers of the paths is also incorporated into the conveyance time, so that organizations are
ready to calculate a more accurate delivery time which improves their customers’ service.

7.10 Conclusion

In this research work, a strategic problem of integrated green logistics systems and location
decisions has been introduced by considering economical, customers’ satisfaction level and
environmental objectives under two-fold uncertainty. In order to support the decision, an
unprecedented multi-objective model has been formulated with the above three conflicting
objectives under a carbon policy. At the same time, it also asks the optimal locations for
the potential facilities in the Euclidean plane as well as the amounts of distributed goods
by different transportation modes simultaneously. In addition, this study makes various
major contributions such as fixed-charge cost, maintenance cost, dwell time, variable budget
constraints, loading and unloading time. Thereafter, a new form of trapezoidal type-2 fuzzy
number has been presented to handle the uncertainties. A simple linear ranking function has
been introduced, significantly defuzzified the aforementioned uncertainty under a smaller
computational effort. A fuzzy technique and a non-fuzzy technique are used to solve the
stated formulation in a successful way. Thereafter, the aforementioned model and solution
procedures have been validated by two examples. Finally, decisions regarding reducing
CO2 due to transportation systems have been discussed, too. We have also drawn the
conclusion that our problem formulation and solution can control the carbon emission due
to the logistics system.


