
Chapter 4

Heuristic approaches for solid
transportation-location problem1

This chapter delineates solid transportation-location problem (ST-LP), a generalization of
the classical STP in which location of potential facility sites are sought so that the total
transportation cost by means of conveyances from existing facility sites to potential facility
sites will be minimized. This is one of the most important problems in the transportation
system and the location research areas. Two heuristic approaches are developed to solve
such type of problem: a locate-allocate heuristic and an approximate heuristic. Thereafter,
the performance of the proposed model and the heuristics are evaluated by an application ex-
ample, and the obtained results are compared. Moreover, a sensitivity analysis is introduced
to investigate the resiliency of the proposed model. Finally, conclusions are provided.

4.1 Introduction

Determining optimum places for the facilities and optimum transportation from existing
sites to the facilities belongs to the main problems in supply chain management. FLP and
STP are well connected with the transportation network. In ST-LP, one has to determine
where and how to locate the new facilities among several existing facilities so that the
total transportation cost by different types of conveyances from the existing facilities to
the potential facilities will be minimized. Hereafter, ST-LP, a nonlinear cost minimization
problem, is solved over a continuous surface with a hyperbolic approximation of Euclidean
distance. In the present era, there have been many solution approaches to tackle several
traditional facility location problems. Among them, the most commonly used approaches are
locate-allocate (Loc-Alloc) heuristic, approximate heuristic, genetic algorithm, Lagrangean
relaxation, etc. From the aforementioned solution approaches, the Loc-Alloc heuristic and
the approximate heuristic are widely used for solving the different facility location problems
[19, 29, 71, 158]. In fact, they always provide a good solution within a relatively short

1The content of this chapter has been published in Central European Journal of Operations Research Re-
search, Springer, SCIE, I.F: 2.000, 28:939-961, 2020, https://doi.org/10.1007/s10100-019-00610-7.
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computational time [29, 71]. Due to this fact, we develop heuristic approaches for solving
ST-LP with multiple existing and potential facility sites. The main aim is to incorporate
a way to connect FLP and STP, and we develop heuristic approaches for tackling our
stated problem. We extend the concept of STP by taking the origins as existing sites and
destinations as facilities that are to be found. We determine the best location of a facility
and the effective transportation cost by means of conveyances from sources to this facility
locations simultaneously by solving ST-LP. The formulation can be applied to plant location
problems where minimizing the total transportation cost by different types of conveyances
is taken into consideration as the main priority. We believe that this formulation is more
applicable than classical STP and FLP. It will be very useful to the model of emergency
services and online shopping systems.

4.2 Mathematical description

Here, we first introduce the proposed problem, i.e., ST-LP. Thenceforth, the mathematical
identification is stated on the premise of the following notations and assumptions. The
connection between this formulation and STP, and its characteristic properties are illustrated.

4.2.1 Problem background

In this subsection, a new strategical problem is investigated from an economic point of
view. Figure 4.1 exhibits the ST-LP network with various existing facility sites, the total
transportation cost by different types of conveyances (e.g., trucks, air freight, goods trains,
and ships) and potential facility sites. Goods are transported from existing facility sites to
potential facility sites with the objective to minimize the total transportation cost by different
types of transport modes. Let us assume that there are three existing facility sites, S1, S2 and
S3, two different types of conveyances, E1 and E2, and three potential facility sites, D1, D2

and D3. In fact, the associated supply and demand of the existing facility sites and potential
facility sites are known. Furthermore, the locations of S1, S2 and S3 are given. But, the
locations of D1, D2 and D3 are not known in the Euclidean plane. Consequently, the lines
(paths) denote the transportation cost function per unit commodity from S1, S2 and S3 to D1,
D2 and D3, by the conveyances E1 and E2, respectively. Under this circumstance, one has
to determine the optimal locations of the potential facility sites in such a way that the total
transportation cost from existing facility sites to potential facility sites is minimized. Due to
this reason, an integration between the FLP and the STP is made.

4.2.2 Notations and Assumptions

The following notations and assumptions are used to design the model:

m : number of existing facility sites,
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Fig. 4.1: Pictorial diagram of ST-LP.

p : number of potential facility sites,

l : number of conveyances,

γi : nonnegative weight of existing facility sites (i = 1,2, . . . ,m),

ai : availability at i-th existing facility site (i = 1,2, . . . ,m),

b j : demand at j-th potential facility site ( j = 1,2, . . . , p),

ck : limitation on capacity to transport the product by k-th conveyance (k = 1,2, . . . , l),

εk : nonnegative k-th conveyance cost per unit commodity (k = 1,2, . . . , l),

δk : nonnegative weights of k-th conveyance (k = 1,2, . . . , l),

(ui,vi): coordinates of i-th existing facility site (i = 1,2, . . . ,m),

(x j,y j): coordinates of j-th potential facility site ( j = 1,2, . . . , p),

wi jk : amount of flow to be transported from i-th existing facility site to j-th potential facility
site by means of each conveyance k,

W : {(wi jk) : (i = 1,2, . . . ,m; j = 1,2, . . . , p; k = 1,2, . . . , l)}: the feasible set with respect
to the matrix variable w,

WB : (wB
i jk : i = 1,2, . . .m; j = 1,2, . . . , p; k = 1,2, . . . , l), the initial basic feasible solution,

F : R2p ×W , where (x,y) ∈ R2p and w ∈W , the feasible set,

φk = εkϕk : transportation cost function per unit flow from an existing facility site to a
potential facility site by means of conveyance k.

• The solution space is continuous. The parameters are deterministic.

• The space in which potential facility sites are located is the planner. The potential
facility sites are assumed as points.
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• The transported products are homogeneous in nature. The modes of transport are
heterogeneous in nature.

• The distance function is a hyperbolic approximation of Euclidean distance(
ϕk(ui,vi;x j,y j) =

√
(ui − x j)2 +(vi − y j)2 +δk

)
.

• The facilities are capacitated. No relationship exists between potential facility sites.
The opening cost of new potential facility sites are ignored.

4.2.3 Model identification

In this subsection, a mathematical model is introduced based on FLP and STP. In fact,
instead of determining the potential facility sites, this model asks for the amounts of flow to
be transported from all existing facility sites to all potential facility sites by means of any
conveyances such that the total transportation cost is minimized. The mathematical model
of ST-LP can be stated as follows:
Model 4.1

minimize Z(x,y,w) =
m

∑
i=1

p

∑
j=1

l

∑
k=1

γiwi jkφk(ui,vi;x j,y j) (4.1)

subject to
p

∑
j=1

l

∑
k=1

wi jk ≤ ai (i = 1,2, . . . ,m), (4.2)

m

∑
i=1

l

∑
k=1

wi jk ≥ b j ( j = 1,2, . . . , p), (4.3)

m

∑
i=1

p

∑
j=1

wi jk ≤ ck (k = 1,2, . . . , l), (4.4)

wi jk ≥ 0 ∀ i, j,k. (4.5)

The objective function (4.1) indicates to minimize the total transportation cost from existing
facility sites to potential facility sites by means of any conveyance. Constraints (4.2)
impose that the total amounts of each existing facility site cannot go surplus its availability.
Constraints (4.3) enforce that the total items of each potential facility site satisfy its desired
demand. Constraints (4.4) suggest that the total flow of each conveyance cannot exceed its
capacity. Constraints (4.5) are non-negativity conditions.

4.2.4 Connection between ST-LP and STP

The transportation cost function of (4.1) is only dependent on the locations of the potential
facility sites. If we determine the optimal location of potential facility sites, the cost
functions convert into constant cost functions. Consequently, we use short notations (x∗j ,y

∗
j)

for optimal location and γiφk(ui,vi;x∗j ,y
∗
j) = ci jk (the unit transportation cost from i-th source

to the j-th demand point by means of k-th conveyance). Hence, Model 4.1 is represented as
follows:



4.2 Mathematical description 57

Model 4.2

minimize Z(w) =
m

∑
i=1

p

∑
j=1

l

∑
k=1

ci jkwi jk (4.6)

subject to the constraints (4.2) to (4.5),

which is the traditional form of an STP.

4.2.5 Characteristics properties

Herein, few fundamental propositions and a theorem are introduced to understand the nature
of ST-LP.

Proposition 4.1 A necessary and sufficient condition for a feasible solution of ST-LP is

∑
m
i=1 ai ≥ ∑

p
j=1 b j and ∑

l
k=1 ck ≥ ∑

p
j=1 b j.

Proof: This property is known as feasibility condition, and it depends on the constraints of
ST-LP. In fact, two problems, i.e., Models 4.1 and 4.2 have the same constraints. Moreover,
the proof is given in [150] for the case of an STP. �

Proposition 4.2 The feasible solution of ST-LP is never unbounded.

Proof: From ST-LP constraints, we obtain:
p

∑
j=1

l

∑
k=1

wi jk ≤ ai (i = 1,2, . . . ,m),

m

∑
i=1

l

∑
k=1

wi jk ≥ b j ( j = 1,2, . . . , p),

m

∑
i=1

p

∑
j=1

wi jk ≤ ck (k = 1,2, . . . , l),

wi jk ≥ 0 ∀ i, j,k.

From the above constraints, we can write b j ≤ wi jk ≤ ai, b j ≤ wi jk ≤ ck ∀ i, j and k, and
furthermore wi jk ≥ 0 ∀ i, j and k. Then, inf{0,b j} ≤ wi jk ≤ inf{ai,ck} ∀ i, j and k. As
b j> 0 ∀ j, we conclude that 0 ≤ wi jk ≤ inf{ai,ck} ∀ i, j and k. This ends the proof of the
proposition. �

Proposition 4.3 The number of non-degenerated basic variables in ST-LP is at most (m+

p+ l −2).

Proof: This property also depends on the constraints. Here, both problems, i.e., Models 4.1
and 4.2 reveal the same constraints. Thus, this proposition coincides with the STP. Once
again, the proof is provided in [150] for the STP. �

Proposition 4.4 For the problem minimize(x,y,u) Z = ∑
m
i=1 ∑

p
j=1 ∑

l
k=1 γiwi jkφk(ui,vi;x j,y j),

(wi jk) ∈W, the optimal solution exists at some extreme points of the feasible set W of ST-LP.
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Proof: Let (x,y)= (x j,y j) ( j = 1,2, . . . , p) and wE ∈{(wE
i jk) (i= 1,2, . . . ,m; j = 1,2, . . . , p;

k= 1,2, . . . , l),extreme points of W}. If we choose potential facility sites such that (x∗,y∗)=
(x∗j ,y

∗
j) by determining optimal locations, then the problem becomes

minimize(u) Z = ∑
m
i=1 ∑

p
j=1 ∑

l
k=1 γiwi jkφk(ui,vi;x∗j ,y

∗
j), (wi jk) ∈W , which is the traditional

form of a STP. Then, it is never unbounded but has a solution at some extreme point wE ∈W .
Hence, we conclude that (x∗,y∗,wE) is the optimal solution at the extreme points of W to
ST-LP. �

Proposition 4.5 The number of basic feasible solutions of ST-LP is at most
( mpl

m+p+l−2

)
.

Proof: ST-LP has mpl variables and at most m+ p+ l −2 basic variables. Consequently,
the number of basic feasible solutions of ST-LP is at most

( mpl
m+p+l−2

)
. �

Theorem 4.1 The objective function Z = ∑
m
i=1 ∑

p
j=1 ∑

l
k=1 γiwB

i jkφk(ui,vi;x j,y j) is a convex

function in the joint variable (x,y) on R2p.

Proof: It is well-known that a smooth function Z is convex on the region iff the correspond-
ing Hessian matrix with Z is positive semidefinite on the region [130]. Let Z = ∑

p
j=1 Z j,

where Z j = ∑
m
i=1 ∑

l
k=1 γiwB

i jkφk(ui,vi;x j,y j) and the terms wB
i jk are constants. Here, let Z j

only depends on the variables x j and y j. The Hessian matrix for Z j at (x j,y j) is

H j =

 ∂ 2Z j

∂x2
j

∂ 2Z j
∂x j∂y j

∂ 2Z j
∂y j∂x j

∂ 2Z j

∂y2
j

 .

The principal minors of H j are ∂ 2Z j

∂x2
j

and detH j (determinant of H j).
Now,

∂ 2Z j

∂x2
j
=

m

∑
i=1

l

∑
k=1

γiεkwB
i jk[(vi − y j)

2 +δk]

[(ui − x j)2 +(vi − y j)2 +δk]3/2 ,

and detH j =
∂ 2Z j

∂x2
j

∂ 2Z j

∂y2
j
−
(

∂ 2Z j

∂x j∂y j

)2 (
since

∂ 2Z j

∂x j∂y j
=

∂ 2Z j

∂y j∂x j

)
=
( m

∑
i=1

l

∑
k=1

γiεkwB
i jk[(vi − y j)

2 +δk]

[(ui − x j)2 +(vi − y j)2 +δk]3/2

)( m

∑
i=1

l

∑
k=1

γiεkwB
i jk[(ui − x j)

2 +δk]

[(ui − x j)2 +(vi − y j)2 +δk]3/2

)
−
( m

∑
i=1

l

∑
k=1

γiεkwB
i jk(ui − x j)(vi − y j)

[(ui − x j)2 +(vi − y j)2 +δk]3/2

)2

=
( m

∑
i=1

l

∑
k=1

( √
γiεkwB

i jk(vi − y j)

[(ui − x j)2 +(vi − y j)2 +δk]3/4

)2
)( m

∑
i=1

l

∑
k=1

( √
γiεkwB

i jk(ui − x j)

[(ui − x j)2 +(vi − y j)2 +δk]3/4

)2
)

−
( m

∑
i=1

l

∑
k=1

√
γiεkwB

i jk(vi − y j)

[(ui − x j)2 +(vi − y j)2 +δk]3/4

√
γiεkwB

i jk(ui − x j)

[(ui − x j)2 +(vi − y j)2 +δk]3/4

)2

+2
( m

∑
i=1

l

∑
k=1

γiεkwB
i jkδk

[(ui − x j)2 +(vi − y j)2 +δk]3/2

)
.
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Now,
(

∑
m
i=1 ∑

l
k=1
( √

γiεkwB
i jk(vi−y j)

[(ui−x j)2+(vi−y j)2+δk]3/4

)2
)(

∑
m
i=1 ∑

l
k=1
( √

γiεkwB
i jk(ui−x j)

[(ui−x j)2+(vi−y j)2+δk]3/4

)2
)
≥(

∑
m
i=1 ∑

l
k=1

√
γiεkwB

i jk(vi−y j)

[(ui−x j)2+(vi−y j)2+δk]3/4

√
γiεkwB

i jk(ui−x j)

[(ui−x j)2+(vi−y j)2+δk]3/4

)2
(by Cauchy-Schwarz inequality).

As γi > 0,εk ≥ 0,wB
i jk ≥ 0,δk ≥ 0,(ui−x j)

2 ≥ 0 and (vi−y j)
2 ≥ 0, we conclude that ∂ 2Z j

∂x2
j
≥ 0

and detH j ≥ 0 for all values of x j and y j. Hence, Z j is convex with respect to x j and y j. Let(
(x1,y1),(x2,y2), . . . ,(xp,yp)

)
and

(
(x′1,y

′
1),(x

′
2,y

′
2), . . . ,(x

′
p,y

′
p)
)

be two arbitrary points of
R2p, and α ∈ [0,1].
Herewith,

Z
(

α
(
(x1,y1),(x2,y2), . . . ,(xp,yp)

)
+(1−α)

(
(x′1,y

′
1),(x

′
2,y

′
2), . . . ,(x

′
p,y

′
p)
))

=
p

∑
j=1

Z j

(
α
(
(x1,y1),(x2,y2), . . . ,(xp,yp)

)
+(1−α)

(
(x′1,y

′
1),(x

′
2,y

′
2), . . . ,(x

′
p,y

′
p)
))

≤ α

p

∑
j=1

Z j
(
(x1,y1),(x2,y2), . . . ,(xp,yp)

)
+(1−α)

p

∑
j=1

Z j
(
(x′1,y

′
1),(x

′
2,y

′
2), . . . ,(x

′
p,y

′
p)
)

= αZ
(
(x1,y1),(x2,y2), . . . ,(xp,yp)

)
+(1−α)Z

(
(x′1,y

′
1),(x

′
2,y

′
2), . . . ,(x

′
p,y

′
p)
)
.

Therefore, Z is convex in the variable (x,y) on R2p. �

4.3 Methodology

In this section, we first present a locate-allocate (Loc-Alloc) heuristic with its algorithm,
and introduce an approximate heuristic algorithm for the proposed model.

4.3.1 Loc-Alloc heuristic approach

The Loc-Alloc heuristic approach was first introduced to solve the large-scale classical
facility location problems by Cooper [29], which gives always a good solution in less
computational time. We develop it to solve ST-LP. Here, the feasible set of our ST-LP
program is a bounded convex set with a convex objective function. The optimal solution
arises at an extreme point of the constraint set (by Propositions 4.2 and 4.4, and Theorem
4.1). The proposed heuristic is comprised of 2 parts. In Part 1, the heuristic seeks the
initial location, and in Part 2 it finds the optimum locations. Here, at first, the locations are
placed for p facilities from m existing sites. Then, the distances between p facilities and
m existing locations are computed. If p ≤ m, we easily calculate such distances; however,
if p > m, we introduce a heuristic concept to resolve this issue. Initially, we consider
the first m facility allocations as m existing sites, and we allocate the remaining (p−m)

facilities in some Euclidean points with large coordinates such that the distances of those
coordinates become a very large number from facilities. Because of that, a large positive
number is assigned for such distances which cannot be calculated. When we take the
minimum among the distances, these large distances will not be affected. Now, it is already
assumed that the distances are cost functions per unit commodity from the i-th existing
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facility site to the j-th potential facility site by means of k-th conveyances. We take these
distances as the cost coefficients; herewith, then the problem converts into a classical STP
(Model 4.2). Therefore, we solve it to generate the initial basic feasible solutions which are
WB = (wB

i jk : i = 1,2, . . .m; j = 1,2, . . . , p; k = 1,2, . . . , l); then for each such solution we
solve the problem:

minimize(x,y) ZB =
p

∑
j=1

ZB
j (4.7)

subject to the constraints (4.2) to (4.5),

where ZB
j = ∑

m
i=1 ∑

l
k=1 γiwB

i jkφk(ui,vi;x j,y j) ( j = 1,2, . . . , p). Then, we minimize all the
functions ZB

j ( j = 1,2, . . . , p) for minimizing ZB. Here, the iterative formula are derived in
similar way of Appendix A.1 to solve the problem (4.7). The iterations for (x j,y j) are as
follows:

x0
j =

∑
m
i=1 ∑

l
k=1 γiwB

i jkui

∑
m
i=1 ∑

l
k=1 γiwB

i jk

( j = 1,2, . . . , p), (4.8)

y0
j =

∑
m
i=1 ∑

l
k=1 γiwB

i jkvi

∑
m
i=1 ∑

l
k=1 γiwB

i jk

( j = 1,2, . . . , p), (4.9)

xr+1
j =

∑
m
i=1 ∑

l
k=1

εkγiwB
i jkui

ϕk(ui,vi;xr
j,y

r
j)

∑
m
i=1 ∑

l
k=1

εkγiwB
i jk

ϕk(ui,vi;xr
j,y

r
j)

( j = 1,2, . . . , p; r ∈ N), (4.10)

yr+1
j =

∑
m
i=1 ∑

l
k=1

εkγiwB
i jkvi

ϕk(ui,vi;xr
j,y

r
j)

∑
m
i=1 ∑

l
k=1

εkγiwB
i jk

ϕk(ui,vi;xr
j,y

r
j)

( j = 1,2, . . . , p; r ∈ N), (4.11)

where ϕk(ui,vi;xr
j,y

r
j)= [(ui − xr

j)
2 +(vi − yr

j)
2+δk]

1/2. Let S= {Z∗
n : optimum value for ZB

for n-th basic feasible solution}. Clearly, S is a finite set according to Proposition 4.5.
Hence, it has a minimum; the optimal value of the objective function Z∗ for ST-LP will
be Z∗ = minS. If the optimum has been attained at n = q, then the optimal solutions are
(xq

j ,y
q
j), ( j = 1,2, . . . , p), and wB

i jkq
(i = 1,2, . . . ,m; j = 1,2, . . . , p; k = 1,2, . . . , l), where

(xq
j ,y

q
j) indicates (x j,y j) for the q-th basic feasible solution and wB

i jkq
are the values of wB

i jk

at this solution.

4.3.2 A Loc-Alloc algorithm

The steps of the Loc-Alloc heuristic algorithm are as follows:
Step 1: First, the initial locations are chosen for each of the p facilities from m existing
sites.
Step 2: Therefore, two cases occur: if p ≤ m, then it can be easily calculated the distances
between the existing and the potential facility sites. But, if p > m, then the first m facility
allocations are considered as m existing sites, and the remaining (p−m) facilities are
allocated in some large number of coordinates such that the distances of those coordinates
become a very large number from facilities. Because of that, a large positive number is
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assigned for such distances which cannot be calculated. When the minimum among the
distances is taken, these large distances will stay unaffected.

Step 3: It is already assumed that the distances are taken as the cost coefficients. Then, the
formulation is converted into an STP.

Step 4: Using MATLAB computation software, we can easily find the set of initial basic
feasible solutions WB.

Step 5: Employing WB from Step 4 and the iterations given by (4.8) to (4.11), we solve
ST-LP to seek a new set of potential locations.

Step 6: If any of the locations has been rounded up to 4 decimal places, then repeat Step 5;
otherwise: stop.

Remark 1: The optimal solutions can be sought where the existing facility sites are allocated
to the potential facility sites ( j = 1,2, . . . , p). Subsequently, subsests are provided by
P1 = {(u1,v1), . . . ,(u j1,v j1)},P2 = {(u j1+1,v j1+1), . . . ,(u j2,v j2)}, . . . ,Pp = {(u jp−1+1,

v jp−1+1), . . . ,(um,vm)}, respectively [93].

4.3.3 An approximate heuristic algorithm

Herein, we introduce an approximate heuristic algorithm for solving ST-LP program. This
heuristic approach was also proposed by Cooper [29] to solve the traditional FLP. Here,
we employ a trick to reduce the possible cases obtained by our Loc-Alloc heuristic. Due
to this matter, the approximate heuristic is more suitable for large-scale entries in less
computational effort. The following steps are illustrated for locating the optimal facility
sites:

Step 1: We generate an m×m matrix of distances between the existing sites. We address all
such distances as cost coefficients.

Step 2: We consider two cases: if p = 1, then for each of the columns we built its sum; the
column index with the minimum sum indicates at place, the single facility is to be located. If
p > 1, then we generate all possible combinations of the p facility sites from m existing sites.
For each combination, the existing sites are considered as potential facility sites, and other
existing sites are designated depending on which potential facility sites have the smallest
distance. Finally, all designated distances are summed up. The final possible locations are
those with the minimum sum of costs.

Step 3: With these possible locations, we determine the cost coefficients. Afterwards, the set
of initial basic feasible solutions WB are easily obtained by MATLAB computation software.
Step 4: Using WB from Step 3 and the formula (4.8) to (4.11), we locate the facilities at the

best place.

Step 5: Repeat Step 4 until no further changes are possible when correcting up to 4 decimal
places; otherwise: stop.
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4.4 Application example

In this section, a real-life based example is incorporated to illustrate that the stated model
and the approaches work well in locating the potential facility sites into the Euclidean plane
with the objective of minimizing the total transportation cost by different modes of transport.
Here, we consider an industrial organization wishing to set-up some new plants with the goal
of minimizing the total transportation cost by means of conveyances from the existing plants
to new plants. The organization has 4 plants: S1, S2, S3 and S4, and it wants to establish 3
new plants: D1, D2 and D3. Products are transported by 3 different conveyances: E1, E2 and
E3. The availability at S1, S2, S3 and S4, the requirement of the plants D1, D2, and D3, and
the capacity of conveyances E1, E2 and E3 are given. The position and the weights of the
plants S1, S2, S3 and S4 are also known. Data of real-life scenario are provided in Tables
4.1-4.3.

Table 4.1: Cost of matrix (ci jk).

Capacity (ek)
E1 E1 E1 40

Conveyance E2 E2 E2 80
E3 E3 E3 85

D1 D2 D3 Supply (ai)
S1 c111 c112 c113 c121 c122 c123 c131 c132 c133 20
S2 c211 c212 c213 c221 c222 c223 c231 c232 c233 85
S3 c311 c312 c313 c321 c322 c323 c331 c332 c333 40
S4 c411 c412 c413 c421 c422 c423 c431 c432 c433 60
Demand (b j) 50 85 70

Table 4.2: Positions & weights of the ex-
isting plants.

Position (ui,vi) Weight (γi)
S1 (4,6) 0.2
S2 (6,10) 0.1
S3 (8,7) 0.4
S4 (10,10) 0.3

Table 4.3: Conveyances cost and weights.

Conveyance
cost

Weight
(δk)

E1 10 0.3
E2 30 0.5
E3 20 0.2

The heuristic approaches are coded in C++ and conducted using a code-block compiler on a
Lenovo z580 computer with 2.50 GHz Intel (R) core (TM) i5-3210M CPU with 4 GB RAM.
In contrast, the computational results are compared with Linux terminal on a computer with
Intel(R) Core (TM) i3-4130 CPU @3.40 GHz with 4 GB RAM.

4.4.1 Performance of the Loc-Alloc heuristic

Here, we mainly focus on the following topics for solving ST-LP by our Loc-Alloc heuristic:

• First, 3 initial locations are selected for each of 3 plants based on Table 4.2. Then,
four cases occur, which are displayed in Tables 4.4-4.7.
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Table 4.4: Case 4.1.

Position Weight
D1 (4,6) 0.2
D2 (6,10) 0.3
D3 (8,7) 0.4

Table 4.5: Case 4.2.

Position Weight
D1 (6,10) 0.1
D2 (8,7) 0.4
D3 (10,10) 0.3

Table 4.6: Case 4.3.

Position Weight
D1 (8,7) 0.4
D2 (10,10) 0.3
D3 (4,6) 0.2

Table 4.7: Case 4.4.

Position Weight
D1 (10,10) 0.3
D2 (4,6) 0.2
D3 (6,10) 0.1

• We determine the distances between existing and initial locations of plants by using
Tables 4.4-4.7, and put the distances as cost coefficients in Tables 4.8-4.11, respec-
tively.

Table 4.8: Cost Coefficients (ci jk) for Table 4.4.

c111 = 0 c221 = 0 c311 = 41.593 c411 = 72.318
c112 = 0 c212 = 135.830 c312 = 124.779 c412 = 217.370
c113 = 0 c213 = 82.945 c313 = 82.945 c413 = 144.449
c121 = 45.055 c211 = 45.055 c321 = 36.469 c421 = 40.373
c122 = 135.830 c222 = 0 c322 = 109.407 c422 = 121.860
c123 = 89.888 c223 = 0 c323 = 72.663 c423 = 80.498
c131 = 41.593 c231 = 36.469 c331 = 0 c431 = 36.469
c132 = 124.779 c232 = 109.407 c332 = 0 c432 = 110.227
c133 = 82.945 c233 = 72.663 c333 = 0 c433 = 72.663

Table 4.9: Cost Coefficients (ci jk) for Table 4.5.

c111 = 45.055 c221 = 36.469 c311 = 36.469 c411 = 40.373
c112 = 135.830 c212 = 0 c312 = 110.227 c412 = 121.860
c113 = 89.888 c213 = 0 c313 = 72.663 c413 = 80.498
c121 = 41.593 c211 = 0 c321 = 0 c421 = 36.469
c122 = 125.499 c222 = 110.227 c322 = 0 c422 = 110.227
c123 = 82.945 c223 = 72.663 c323 = 0 c423 = 72.663
c131 = 72.318 c231 = 40.373 c331 = 36.469 c431 = 0
c132 = 217.370 c232 = 121.860 c332 = 110.227 c432 = 0
c133 = 144.499 c233 = 80.498 c333 = 72.663 c433 = 0
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Table 4.10: Cost Coefficients (ci jk) for Table 4.6.

c111 = 41.593 c221 = 72.249 c311 = 0 c411 = 36.469
c112 = 125.499 c212 = 110.227 c312 = 0 c412 = 110.227
c113 = 82.945 c213 = 72.663 c313 = 0 c413 = 75.663
c121 = 72.249 c211 = 36.469 c321 = 36.469 c421 = 0
c122 = 217.370 c222 = 217.370 c322 = 110.227 c422 = 0
c123 = 144.499 c223 = 144.499 c323 = 72.663 c423 = 0
c131 = 0 c231 = 45.055 c331 = 41.593 c431 = 72.249
c132 = 0 c232 = 135.830 c332 = 125.499 c432 = 217.370
c133 = 0 c233 = 89.988 c333 = 82.945 c433 = 144.499

Table 4.11: Cost Coefficients (ci jk) for Table 4.7.

c111 = 72.318 c221 = 45.055 c311 = 36.469 c411 = 0
c112 = 217.370 c212 = 121.119 c312 = 110.227 c412 = 0
c113 = 144.499 c213 = 80.498 c313 = 72.663 c413 = 0
c121 = 0 c211 = 40.373 c321 = 41.593 c421 = 72.318
c122 = 0 c222 = 44.434 c322 = 125.499 c422 = 217.370
c123 = 0 c223 = 89.888 c323 = 83.945 c423 = 144.499
c131 = 45.055 c231 = 0 c331 = 36.469 c431 = 40.373
c132 = 44.434 c232 = 0 c332 = 110.227 c432 = 121.860
c133 = 89.888 c233 = 0 c333 = 72.663 c433 = 80.498

• MATLAB computation software is employed for possible initial BFSs, which are
shown in Tables 4.12-4.15.

Table 4.12: Initial BFS (wB
i jk) for Table 4.8.

wB
111 = 0 wB

211 = 0 wB
311 = 0 wB

411 = 30
wB

112 = 0 wB
212 = 0 wB

312 = 0 wB
412 = 0

wB
113 = 20 wB

213 = 0 wB
313 = 0 wB

413 = 0
wB

121 = 0 wB
221 = 0 wB

321 = 0 wB
421 = 0

wB
122 = 0 wB

222 = 40 wB
322 = 0 wB

422 = 0
wB

123 = 0 wB
223 = 45 wB

323 = 0 wB
423 = 0

wB
131 = 0 wB

231 = 0 wB
331 = 0 wB

431 = 10
wB

132 = 0 wB
232 = 0 wB

332 = 40 wB
432 = 0

wB
133 = 0 wB

233 = 0 wB
333 = 0 wB

433 = 20
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Table 4.13: Initial BFS (wB
i jk) for Table 4.9.

wB
111 = 0 wB

211 = 0 wB
311 = 0 wB

411 = 0
wB

112 = 0 wB
212 = 0 wB

312 = 0 wB
412 = 0

wB
113 = 0 wB

213 = 50 wB
313 = 0 wB

413 = 0
wB

121 = 20 wB
221 = 10 wB

321 = 0 wB
421 = 0

wB
122 = 0 wB

222 = 0 wB
322 = 20 wB

422 = 0
wB

123 = 0 wB
223 = 15 wB

323 = 20 wB
423 = 0

wB
131 = 0 wB

231 = 10 wB
331 = 0 wB

421 = 0
wB

132 = 0 wB
232 = 0 wB

332 = 60 wB
432 = 0

wB
133 = 0 wB

233 = 0 wB
333 = 0 wB

433 = 0

Table 4.14: Initial BFS (wB
i jk) for Table 4.10.

wB
111 = 0 wB

211 = 0 wB
311 = 0 wB

411 = 0
wB

112 = 0 wB
212 = 0 wB

312 = 20 wB
412 = 0

wB
113 = 0 wB

213 = 10 wB
313 = 20 wB

413 = 0
wB

121 = 0 wB
221 = 25 wB

321 = 0 wB
421 = 0

wB
122 = 0 wB

222 = 0 wB
322 = 0 wB

422 = 60
wB

123 = 0 wB
223 = 0 wB

323 = 0 wB
423 = 0

wB
131 = 0 wB

231 = 15 wB
331 = 0 wB

421 = 0
wB

132 = 0 wB
232 = 0 wB

332 = 0 wB
432 = 0

wB
133 = 20 wB

233 = 35 wB
333 = 0 wB

433 = 0

Table 4.15: Initial BFS (wB
i jk) for Table 4.11.

wB
111 = 0 wB

211 = 0 wB
311 = 0 wB

411 = 0
wB

112 = 0 wB
212 = 0 wB

312 = 0 wB
412 = 50

wB
113 = 0 wB

213 = 0 wB
313 = 0 wB

413 = 0
wB

121 = 0 wB
221 = 15 wB

321 = 15 wB
421 = 15

wB
122 = 0 wB

222 = 0 wB
322 = 0 wB

422 = 0
wB

123 = 20 wB
223 = 0 wB

323 = 25 wB
423 = 0

wB
131 = 0 wB

231 = 0 wB
331 = 0 wB

421 = 0
wB

132 = 0 wB
232 = 30 wB

332 = 0 wB
432 = 0

wB
133 = 0 wB

233 = 40 wB
333 = 0 wB

433 = 0

• Finally, we explore the C++ programming language to execute the results for Tables
4.12-4.15, and place the obtained results in Table 4.16.

Table 4.16: Computational results for Tables 4.12-4.15.

Initial BFS Location of D1 Location of D2 Location of D3 Value of Z
Table 4.12 (8.791,9.194) (6.000,10.000) (8.128,7.192) 1595.000
Table 4.13 (6.000,10.000) (7.913,7.034) (9.987,10.000) 1061.960
Table 4.14 (7.984,7.024) (9.968,10.000) (5.222,8.443) 1170.334
Table 4.15 (10.000,10.000) (7.874,7.030) (6.000,10.000) 1031.294
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4.4.2 Performance of the approximate heuristic

This heuristic is same as the Loc-Alloc heuristic without a trick of reducing possible cases
for locating the initial potential sites. Employing this trick (i.e., Step 2), we reduce the cases
which are derived from the Loc-Alloc heuristic. For that reason, we need less computational
burden.

• Step 1 is the same as our Loc-Alloc heuristic, 3 initial locations are chosen from 4
existing plants. The cases are already provided in Tables 4.4-4.7.

• Step 2 is the most important for this heuristic. Here, we first calculate the distances
between assigned locations and the rest site for each case. Then, the distances are
summed up for each case. They are given by 896.279 as Case 1, 955.001 as Case 2,
732.866 as Case 3, and 688.756 as Case 4. Eventually, the smallest distance is taken
from the above cases, which arises in Case 4. Therefore, the final initial locations for
the plants are stated in Case 4.

• Now, we repeat our Loc-Alloc heuristic only for Case 4. Finally, the optimal solution
is obtained; it is shown in Table 4.17.

Table 4.17: Computational results for Table 4.15 (for Case 4).

Initial BFS Location of D1 Location of D2 Location of D3 Value of Z
Table 4.15 (10.000,10.000) (7.874,7.030) (6.000,10.000) 1031.294

4.4.3 Computational results and discussion

Here, optimal solutions of the application example are exhibited from 2 heuristics. The
following optimal solution is obtained by both the heuristic approaches using Tables 4.16 and
4.17; and we display it in Table 4.18. The convergence performance of both the heuristics
and the solution are depicted in Figures 4.2-4.3.

Table 4.18: The optimal solution of the proposed ST-LP.

Initial BFS Location of D1 Location of D2 Location of D3 Value of Z
Table 4.15 (10.000,10.000) (7.874,7.030) (6.000,10.000) 1031.294

4.5 Sensitivity analysis

In this section, the range of the optimal solution in ST-LP is investigated by varying the
parameters in the objective function and the constraints. For this purpose, the resiliency of
optimal potential facility sites for new facilities is analyzed while changing the estimation
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Fig. 4.2: Performance of both the heuristic approaches.

Fig. 4.3: The existing and potential facilities in the example.

of weights of the existing facility sites, supply, demand, and conveyance parameters. For the
ST-LP program, it is difficult to choose the ranges where parametric changes can be made
and the given solution still remains optimal. But the main problem arises when the number
of variables and constraints is of large size. For that reason, a simple procedure is already
introduced in Chapter 3 (see Section 3.5) to analyze the sensitivity of parameters. Here, we
repeat the same steps (Steps 1- 4) to obtain the validity ranges of the parameters in ST-LP.

Sensitivity analysis for supply, demand and conveyance parameters:
Let ai be changed to a∗i = ai +βi (i = 1,2,3,4), b j be changed to b∗j = b j +β j ( j = 1,2,3)
and ck be changed to c∗k = ck +βk (k = 1,2,3). Using the proposed procedure, we easily
find the values of a∗i , b∗j and c∗k ; they are displayed in Table 4.19. Note that the ranges of the
other parameters in ST-LP are resolved in a similar way.
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Table 4.19: The ranges of supply, demand and conveyance parameters.

Actual values of ai, b j and ck Changing values of ai, b j and ck
a1 = 20 20 ≤ a∗1 < ∞

a2 = 85 85 ≤ a∗2 < ∞

a3 = 40 40 ≤ a∗3 < ∞

a4 = 60 60 ≤ a∗4 < ∞

b1 = 50 −∞ < b∗1 ≤ 50
b2 = 85 −∞ < b∗2 ≤ 85
b3 = 70 −∞ < b∗3 ≤ 70
c1 = 40 40 ≤ c∗1 < ∞

c2 = 80 80 ≤ c∗2 < ∞

c3 = 85 85 ≤ c∗3 < ∞

4.6 Conclusion

This chapter has been presented a new practical problem for a transportation network system
with the goal of minimizing the total transportation cost by different types of transportation
modes on the entire supply chain and to seek facilities sites for plants. According to our
knowledge, for the first time in research, we have introduced a connection between STP
and FLP. Afterwards, a theorem and few fundamental propositions on ST-LP have been
stated to inspect the nature of our formulation. In addition to the preceding achievements,
we have improved two heuristic approaches to solve the stated problem in an efficient way.
The proposed formulation and developed heuristics have been evaluated by a real-life based
example. Therefore, the derived computational outcomes from our two heuristics have been
compared with suggestions for locating the facilities. In comparison, the Loc-Alloc heuristic
approach is appropriate to solve the ST-LP program with small sizes. The approximate
heuristic is more suitable for ST-LP of larger size since it can generate optimal solutions
in less computational burden. Finally, a sensitivity analysis has been provided to validate
the ranges of the parameters in our formulation. Moreover, the formulation presented here
can be employed in large-scale industrial applications, such as the manufacturing of plants,
genetic-metabolic, financial and further applications.


