Table of Contents

<u>Conter</u>	<u>nt</u>	<u>Page No</u>
List of	Tables	i
List of Figures		ii-vi
Abbrev	viations	vii-viii
Chap	ter 1: General Introduction	1-29
1.1	Motivation	
1.2	Phenolic Resin	
1.2.1	Synthesis of Phenolic Resin	
1.2.2	Novolac type Phenolic Resin and research rationale	
1.3	Polymers to remediate azo-dye containing wastewaters	
1.3.1	Introduction	
1.3.2	Azo dyes and their effects on environment and human health	
1.3.3	Azo dye containing wastewaters	
1.3.4	Wastewater-treatment methods	
1.3.4.1 1.3.4.2 1.3.4.3	Chemical Methods Biological Methods Physico-chemical Methods	
1.3.5	Polymeric adsorbents as effective materials for wastewater tre	eatment

1.3.6 Adsorption of azo dyes on polymeric materials: Literature Review

1.4 Antimicrobial Polymer-Metal Nanoparticle Hybrids

- 1.4.1 Introduction
- 1.4.2 A general overview of metal nanoparticles
- 1.4.3 Antimicrobial metal nanoparticles
- 1.4.4 Silver nanoparticles (AgNPs) as antimicrobials
- 1.4.5 Polymer-silver nanoparticles hybrid as antimicrobial material
- 1.5 Objectives, outcomes and author's achievements
- 1.6 Thesis Organization

Chapter 2:

Novolac type phenolic resin-based networks for the	30-66
removal of azo dyes from aqueous solutions	

2.1 Introduction

2.2 Objective

2.3 Experimental Section

- 2.3.1 Materials and Measurements
- 2.3.2 Synthesis of novolac resin 2.1
- 2.3.3 Synthesis of novolac epoxy resin 2.2
- 2.3.4 Epoxy equivalent weight of novolac epoxy resin 2.2
- 2.3.5 Synthesis of polymer network 2.3
- 2.3.6 Synthesis of polymer network 2.4
- 2.3.7 Network swelling study
- 2.3.8 Porosity measurement
- 2.3.9 Adsorption study
- 2.3.10 Desorption and reusability study

2.4 Results and discussion

- 2.4.1 Synthesis and characterization of novolac-based networks
- 2.4.2 Azo dye adsorption studies
- 2.4.4 Importance of the work

2.5 Conclusion

2.6 Further scope of work

Chapter 3:

Iron(III) loaded novolac-based networks for the removal67-85of azo dyes from aqueous solutions67-85

- 3.1 Introduction
- 3.2 Objective

3.3 Experimental Section

- 3.3.1 Materials and Measurements
- 3.3.2 Synthesis of iron(III) loaded novolac-based networks
- 3.3.3 Adsorption experiments
- 3.3.4 Desorption and reusability study

3.4 Results and discussion

- 3.4.1 Synthesis and characterization
- 3.4.2 Azo dye adsorption studies
- 3.4.3 Desorption and reusability study
- 3.4.4 Adsorption Desorption Mechanism
- 3.4.5 Importance of the work.

3.5 Conclusion

3.6 Further scope of work

Chapter 4:

Novolac resin-based network with aminopyridine units *86-114* for the removal of azo dyes from aqueous solutions

- 4.1 Introduction
- 4.2 Objective

4.3 Experimental Section

- 4.3.1 Materials and Measurements
- 4.3.2 Synthesis of novolac resin 2.1
- 4.3.3 Synthesis of novolac epoxy resin 2.2
- 4.3.4 Synthesis of novolac-based network 4.1
- 4.3.5 Network swelling study
- 4.3.6 Adsorption experiments
- 4.3.7 Desorption and reusability study

4.4 Results and discussion

- 4.4.1 Synthesis and characterization
- 4.4.2 Azo dye adsorption studies
- 4.4.3 Desorption and reusability study
- 4.4.4 Adsorption-Desorption Mechanism
- 4.4.5 Comparison of adsorption performance

4.5 Conclusion

4.6 Further scope of work

Chapter 5:

Functionalized novolac-based polymer- silver nanoparticles hybrid:An effective antibacterial material 115-131

5.1 Introduction

5.2 Objective

5.3 Experimental Section

- 5.3.1 Materials and Measurements
- 5.3.2 Synthesis of functionalized novolac resin 5.1
- 5.3.3 Preparation of functioanized novolac resin-silver nanoparticles hybrid
- 5.3.4 Antimicrobial assay
- 5.3.5 Cytoplasmic material release assay

5.4 Results and discussion

- 5.4.1 Synthesis and characterization of functioanized novolac resin
- 5.4.2 Characterization of functionalized novolac resin-AgNPs hybrid
- 5.4.3 Antibacterial Assay

5.5 Conclusion

5.6 Further scope of work

Chapter 6: Conclusion	132-135
Summary:	136-138
Bibliography:	139-150
Appendix: List of Publication	151