
Chapter 3

Price-discount and delay-in-payments in

an inventory model

3.1 Introduction

Deterioration of products is one of the major part to be considered in manufacturing industry. In

real life, it is too difficult to maintain the deterioration of items such as fruits and vegetables. These

types of items, which are decayed due to the time factor, are not in a good condition to fulfill the

demand of customers. Therefore, the effect of deterioration cannot be disregarded in production lot-

size. Deterioration is generally taken to be a function of the on-hand inventory. Dave and Pandya

(1985) presented two inventory models i.e., infinite and finite horizon models in which deterioration

is assumed to be a constant fraction of on hand inventory. They constructed under the assumptions

of instantaneous delivery and no shortages. Heng et al. (1991) formulated a production model

for lot-size, order-level inventory system with the effect of decay. They minimized total cost by

optimizing optimal lot-size and order level. Skouri and Papachristos (2002) derived a continuous
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review inventory model by highlighting deterioration, shortage, and opportunity cost. Demand rate

is depicted as a concave function of time. Exponentially decreasing partial backlogging rate which

is also time-dependent function is discussed in their model. Teng and Chang (2005) observed an

EPQ model for deteriorating items. It is assumed that lot of stocks provides a negative impression

on buyer and the amount of display-space is limited. By utilizing this idea, demand can be treated

as stock dependent and also selling-price-dependent. Sana (2010) studied an ordering inventory

model with perishable items and price-dependent demand. Shortage takes places at starting of the

inventory cycle and deterioration is time-proportional. He also formulated the criterion for opti-

mal solution to obtain replenishment schedule and showed the optimal ordering policy is unique.

Sarkar and Sarkar (2013) deduced an inventory model with time-dependent deteriorating products,

where demand is inventory dependent. Bhunia et al. (2014) deals with an inventory model with

deteriorating item for two different warehouses having several preserving facilities. Shortages are

provided and partially backlogged is considered as waiting time-dependent. Different realistic cases,

sub cases, and scenarios corresponding problems have been considered as non-linear constrained op-

timization problems along with the solution process demand. Wu et al. (2016) extended earlier

research works regarding inventory models with trapezoidal-type demand rate. They presented two

inventory systems one with shortages and another for without shortages. Deterioration rate is taken

to be as time-dependent and time value of money is included in their model.

In traditional inventory models, it is considered that the demand rate is constant over the

whole time. EOQ model for constant demand was first derived by Harris (1913). But, all as-

sumptions are not valid in real-life situation. After the pioneering attempt of Harris, some notable

research models about linear-trend demand in demand were done by many researchers. Goswami

and Chaudhuri (1991) explained the inventory replenishment policy for a deteriorating item. They
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obtained number of reorders, interval between two successive reorders, and shortage intervals over a

finite time-horizon. By introducing the concept of exponentially deteriorating items, Hariga (1997)

proposed two computationally efficient solution methods which develop the optimal replenishment

schedules for perishable products with fixed lifetime. Demand is measured as time-dependent for

both models, which are constructed under the assumption of discrete opportunities for replenishment

over a fixed planning horizon. Hsu and Li (2006) surveyed a non-linear mathematical programming

model to optimize a delivery service strategy for online shopping by considering time-dependent con-

sumer demand. They determined optimal number and duration of service cycles for discriminating

strategy and also maximized profit subject to demand and supply interaction. Their results proved

that discriminating service strategy is a more beneficial strategy with respect to uniform strategy.

Sarkar et al. (2011) derived an EMQ model for single type of items with time-dependent demand

under the impact of both inflation as well as time-value of money. During long-run manufacturing

process, machine may produces defective items. The production of defective items increases along

with time and depends on reliability of system. By considering this point of view, they introduced

the concept of defective items and reliability of system into their model. Khanra et al. (2013)

examined an inventory model with finite time horizon and quadratic time-dependent demand. The

idea of delay-in-payments is used to their model. Shortages are considered after some variable time.

Their model is formulated under three different circumstances depending on the time of occurrence

of shortages, credit-period, and cycle time. Li (2015) generated a distributor’s delivery strategy

problem with carbon-emissions, retailers time-dependent demands, and supply interactions. He

proved that models with demand-supply interactions can result maximum profit and market share

rather than without demandsupply interactions. Zhao et al. (2016) described an integrated multi-

stage supply chain for time-dependent demand over a finite planning horizon. Their model obtained
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a production-inventory policy which measured as a weighted directed acyclic graph.

Selling-price is one of the important factor in success of business. Most of the products are

available in the market, where the demand rate of products and the selling-price are closely related.

It is observed that at certain time of product cycle, the monotonically decreasing price-pattern of

any items results increasing in sales. Whenever price of any product reduces, customers are more

affective to that product i.e., demand of that product increases directly. This pattern confirms

our price-dependent demand model. Avinadav et al. (2013) discussed an inventory model for per-

ishable items with jointly price and time-dependent demand. They considered that items have a

fixed shelf-life and the demand rate diminishes linearly with respect to selling-price. In addition,

demand rate decreases polynomially over the time after replenishment, until it disappears either at

the reservation price or at expiration time. Alfares and Ghaithan (2016) developed an inventory

model by assuming the variability of the demand rate, unit holding cost, and unit purchase cost.

They presented a selling-price-dependent demand rate, a storage time-dependent holding cost, and

an order size-dependent purchase cost based on all-units quantity discount.

Earlier, it is assumed that retailers pays the amount instantly for products which they pur-

chase from supplier. Now a days, supplier offers retailer a fixed time-period to pay the purchasing

amount. This fixed time-period is called trade-credit period. On the other hand, retailer offers

their customer a partial trade-credit. Interest is charged to customers if they are not able to settle

the purchasing amount. For this reason, retailer can delay the payment up to the last moment of

credit-period. Hence, retailer can gain more profits. Considering the well-known trade-credit policy,

respective researchers invented different inventory models with trade-credit financing. The view-

point of credit-linked demand and two-levels of trade-credit policy was introduced by Jaggi et al.

(2008) to reflect the real-life situations. They depicted an easy-to-use algorithm which obtain the
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optimal credit and replenishment policy. Sarkar et al. (2014) considered the business strategy that

suppliers offer credit-period to motivate customers for buying more items. Their model highlighted

this policy along with the production of defective items and inspection policy. The lead time is

considered as stochastic in nature. Li et al. (2015) extended their model to the situation where re-

tailers delay-in-payments is provided by supplier. They incorporated corresponding inventory game

with permissible delay-in-payments, and showed that its core is nonempty. Their model generated

a core allocation rule is that can be reached through population monotonic allocation scheme. See

Table 3.1 for contribution of several authors.

Table 3.1: Contribution of several authors

Author(s) Time- Price- Delay Price- Deterioration

dependent dependent -in- discount

demand demand payments

Dave and Pandya (1985)
√

Heng et al. (1991)
√

Goswami and Chaudhuri

(1991)
√

Hariga (1997)
√

Skouri and Papachristos

(2002)
√ √

Teng and Chang (2005)
√ √

Hsu and Li (2006)
√
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Author(s) Time- Price- Delay Price- Deterioration

dependent dependent -in- discount

demand demand payments

Jaggi et al. (2008)
√ √

Sana and Chaudhuri

(2008)
√ √

Sana (2010)
√ √

Sarkar et al. (2011)
√

Avinadav et al. (2013)
√ √

Khanra et al. (2013)
√ √

Sarkar and Sarkar

(2013)
√

Sarkar et al. (2014)
√

Bhunia et al. (2014)
√

Li et al. (2015)
√

Li (2015)
√

Alfares and Ghaithan

(2016)
√

Wu et al. (2016)
√

You (2006)
√

This chapter
√ √ √ √ √
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In this chapter, authors extended the research works of Sana and Chaudhuri’s (2008) model

[Sana, S. and Chaudhuri, K.S. (2008). A deterministic EOQ model with delays in payments and

price-discounts offers. European Journal of Operational Research, 184, 509-533.] for deteriorating

products with different demand functions. The demand function of commodities is taken to be

both time and selling-price-dependent. Suppliers allows a fixed trade-credit-period to retailer to pay

the purchasing amount. In addition, supplier provides price-discount strategy on the purchasing

amount to the retailer. The profit function of retailer is maximized for finite replenishment rate

by determining the selling-price per unit and duration of inventory cycle. Numerical examples are

designed to illustrate this model.

3.2 Mathematical model

The following notation are considered to develop this model.

Decision variables

P selling-price per unit ($/unit)

T duration of inventory cycle (months)

Parameters

I1(t) on-hand inventory during the time t (0 ≤ t ≤ t1) (units)

I2(t) on-hand inventory at time t (t1 ≤ t ≤ T ) (units)

µ replenishment/supply rate (units)

K variable delay-period (unit time)
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Ki ith permissible delay-period (unit time)

D(P, t) demand dependent on time i.e., D(P, t) = a1 + b1t+ c1t
2 − hP , a1, b1, c1, and h > 0

θ(t) deterioration rate, 0 < θ(t) < 1

δi discount rate on the MRP at the ith permissible delay-period

CP purchasing cost per unit ($/unit)

CM maximum retail price (MRP) per unit ($/unit)

CH holding cost ($/unit)

C1 ordering cost ($/order)

Uc rate of interest gaining due to credit-balance (/$/unit time)

Uf rate of interest due to financing inventory (/$/unit time)

t1 duration of the replenishment rate

T ∗ optimal duration of inventory cycle

t∗1 optimal duration of replenishment

AV P1i average profit of the system when T ≥ Ki

AV P2i average profit of the system when T ≤ Ki

In this chapter, same assumptions as on Sana and Chaudhuri (2008a) are considered except the

demand, deterioration, and finite replenishment rate.

1. The inventory system involves single-type of products.
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2. The demand rate increases quadratically with time and decreases linearly with selling-price.

3. Replenishment rate is finite.

4. Permissible delay-in-payments are considered to the retailer by the supplier.

6. Time horizon is infinite and lead time is neglected. No shortage and backlogging are allowed.

The inventory cycle starts with zero inventory. The supply rate µ continues till the time t1

and then it reaches the zero level at time t = T (T ≥ t1) to adjust the demand in the market. To

pay the total purchasing cost, the supplier offers different credit-periods Ki,when, i = 1, 2, 3 to the

retailer. The purchasing cost of different credit-periods are as follows

CP =



CM(1− δ1) when K = K1

CM(1− δ2) when K = K2

CM(1− δ3) when K = K3

∞ when K > K3.


where Ki’s are the ith permissible delay-period at which the discount rate to the retailer is δi. Also

CP tends to ∞ at K ≥ K3, i.e, at infinite purchasing cost, the retailer never purchase any item

from the supplier and must prefer the discount rate δi.

Considering this policy, two cases may arise, which are as follows:

Case 1 When T ≥ K

i.e., inventory cycle length T is larger or equal to the credit-period K.

(See Figure 3.1).

Case 2 When T ≤ K

i.e., inventory cycle length T is smaller or equal to the credit-period K.

(See Figure 3.2).
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Figure 3.1: Graphical illustration of inventory system while T ≥ K

Figure 3.2: Graphical presentation for inventory model when T ≤ K
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Now, the governing differential equations of this model under the presence of deterioration are

dI1
dt

= µ−D(P, t)− θI1 with I1(0) = 0, 0 ≤ t ≤ t1

and

dI2
dt

= −D(P, t)− θI2 with I2(T ) = 0, t1 ≤ t ≤ T

From these two governing differential equations, it can be found that

I1(t) = X1(1− e−θt)−
b1t

θ
− c1t

2

θ
+

2c1t

θ2
, 0 ≤ t ≤ t1,

where X1 =
(
µ−a1+hP

θ
+ b1

θ2
− 2c1

θ3

)
.

and

I2(t) = X2(e
θ(T−t) − 1) + Y1(Te

θ(T−t) − t) + Y2(T
2eθ(T−t) − t2), t1 ≤ t ≤ T,

where X2 =
(
a1−hP

θ
− b1

θ2
+ 2c1

θ3

)
.

[See Appendix A1 for values of Y1 and Y2.]

Now from the continuity condition, using I1(t1) = I2(t1), one can obtain

t1 =
−S +

√
S2 + 4EF

2E

[See Appendix B1 for S, E, and F .]
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Case 1 T ≥ K

While the inventory cycle T is larger or equal to the credit-period K.

Then the holding cost including interest charges is

= CH

∫ t1

0

I1(t)dt+

∫ T

t1

I2(t)dt

= CH

[
X1

(
t1 +

e−θt1 − 1

θ

)
− t12

(
b1
2θ
− c1
θ2

)
− c1t1

3

3θ
+

(
eθ(T−t1) − 1

θ

)
(X2 + Y1T + Y2T

2)

− X2(T − t1)− Y1
(T 2 − t12)

2
− Y2

(T 3 − t13)
3

]

The profit earns due to credit-balance during the delay-period [0, K] is

= UcP

∫ K

0

(K − t)D(P, t)dt

= UcP

(
(a1 − hP )

K2

2
+ b1

K3

6
+ c1

K4

12

)

The interest charged for financing inventory during [K,T ] is

= UfCP

∫ T

K

I2(t)dt

= UfCP

[
(X2 + Y1T + Y2T

2)

(
eθ(T−K) − 1

θ

)
−X2(T −K)− Y1

(T 2 −K2)

2
− Y2

(T 3 −K3)

3

]

Therefore, the total profit is

P1i = [(P − CP )µt1 + UcP{
∫ t1

0

(Ki − t)D(P, t)dt+

∫ Ki

t1

(Ki − t)D(P, t)dt} − CH{
∫ t1

0

I1(t)dt

+

∫ T

t1

I2(t)dt} − UfCP
∫ T

Ki

I2(t)dt− C1], for i ∈ {1, 2, 3}
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Hence, the average profit for Case 1 is

AV P1i =
P1i

T

=
1

T
[UcP{

∫ t1

0

(Ki − t)D(P, t)dt+

∫ Ki

t1

(Ki − t)D(P, t)dt}+ (P − CP )µt1

− CH{
∫ t1

0

I1(t)dt+

∫ T

t1

I2(t)dt} − UfCP
∫ T

Ki

I2(t)dt− C1], for i ∈ {1, 2, 3}.

=
(P − CP )µt1

T
+
PUc
T

[
(a1 − hP )

Ki
2

2
+ b1

Ki
3

6
+ c1

Ki
4

12

]
− CH

T

(
X1

(
t1 +

e−θt1 − 1

θ

)
− b1t1

2

2θ
− c1t1

3

3θ
+
c1t1

2

θ2

)
− CH

T

[(eθ(T−t1) − 1

θ

)
(X2 + Y1T + Y2T

2)−X2(T − t1)

− Y1
(T 2 − t12)

2
− Y2

(T 3 − t13)
3

]
− UfCP

T

(
(X2 + Y1T + Y2T

2)

(
eθ(T−Ki) − 1

θ

)
− X2(T −Ki)− Y1

(T 2 −Ki
2)

2
− Y2

(T 3 −Ki
3)

3

)
− C1

T
, for i ∈ {1, 2, 3}

The optimal value of T ∗ and P ∗ for maximum AV P1i must satisfy following conditions ∂2AV P1i

∂T 2 < 0,

∂2AV P1i

∂P 2 < 0, and (∂
2AV P1i

∂T 2 )(∂
2AV P1i

∂P 2 )− (∂
2AV P1i

∂P∂T
)2 > 0.

The expressions of the two derivatives (See Appendix C1) are highly non-linear.

Case 2 When (T ≤ K)

When, the inventory cycle T is smaller or equal to the credit-period K, the holding cost excluding

interest charges is

= CH

∫ t1

0

I1(t)dt+

∫ T

t1

I2(t)dt

= CH

[
X1

(
t1 +

e−θt1 − 1

θ

)
− t12

(
b1
2θ
− c1
θ2

)
− c1t1

3

3θ
+

(
eθ(T−t1) − 1

θ

)
(X2 + Y1T

+ Y2T
2)−X2(T − t1)− Y1

(T 2 − t12)
2

− Y2
(T 3 − t13)

3

]
The profit gains throughout the delay-period [0, K] is

= UcP

∫ T

0

(T − t)D(P, t)dt+ µt1(K − T )

= UcP

[
(a1 − hP )

T 2

2
+ b1

T 3

6
+ c1

T 4

12
+ µt1(Ki − t)

]
.
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Therefore, the total profit is

P2i = [(P − CP )µt1 + UcP{
∫ T

0

(T − t)D(P, t)dt+ µt1(Ki − t)} − CH{
∫ t1

0

I1(t)dt

+

∫ T

t1

I2(t)dt} − C1], for i ∈ {1, 2, 3}.

The average profit for Case 2 is

AV P2i =
P2i

T

=
1

T
[UcP{

∫ T

0

(T − t)D(P, t)dt+ µt1(Ki − t)}+ (P − CP )µt1 − CH{
∫ t1

0

I1(t)dt

+

∫ T

t1

I2(t)dt} − C1], for i ∈ {1, 2, 3}.

=
(P − CP )µt1

T
+
PUc
T

(
(a1 − hP )

T 2

2
+ b1

T 3

6
+ c1

T 4

12
+ µt1(Ki − t)

)
− CH

T

[
X1

(
t1

+
e−θt1 − 1

θ

)
− t12

(
b1
2θ
− c1
θ2

)
− c1t1

3

3θ
+ (X2 + Y1T + Y2T

2)

(
eθ(T−t1) − 1

θ

)
− X2(T − t1)− Y1

(T 2 − t12)
2

− Y2
(T 3 − t13)

3

]
− C1

T
, for i ∈ {1, 2, 3}

Similarly as earlier case, the optimal value of T ∗ and P ∗ for maximum AV P2i must fulfil following

conditions ∂2AV P2i

∂T 2 < 0, ∂2AV P2i

∂P 2 < 0, and (∂
2AV P2i

∂T 2 )(∂
2AV P2i

∂P 2 )− (∂
2AV P2i

∂P∂T
)2 > 0.

Appendix D1 provides that expressions of the two derivatives are highly non-linear.

3.3 Numerical examples

By applying the numerical data from Sana and Chaudhuri (2008a) model, the average profit of the

system, selling-price per unit, and duration of inventory cycle are calculated.

Example 1(a)

Let C1 = $10 per order, θ = 0.2, CH = $0.5/unit/month, K1 = 2 months, K2 = 4 months, K3 = 6

months, δ1 = 20%, δ2 = 10%, δ3 = 0%, a1 = 80 units, b1 = 5 units, c1 = 0.5 units, h = 1.71 units,
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CM = $120/ unit, Uc = 0.13
12
/$/month, Uf = 0.16

12
/$/month, and µ = 300 units. Then the optimal

solutions are {AV P11 = $319.101, T = 6.8 months, and P = $90.11/unit}. Figure 3.3 indicates

the optimality of average profit of the system AV P11.

Figure 3.3: Average profit of the system AV P11 versus duration of inventory cycle (T ) and selling-

price per unit (P )

Example 2(a)

Let C1 = $10 per order, θ = 0.2, CH = $0.5/unit/month, K1 = 2 months, K2 = 4 months, K3 = 6

months, δ1 = 20%, δ2 = 10%, δ3 = 0%, a1 = 80 units, b1 = 5 units, c1 = 0.5 units, h = 1.71 units,

CM = $120/ unit, Uc = 0.13
12
/$/month, Uf = 0.16

12
/$/month, and µ = 300 units. Then the optimal

solutions are {AV P12 = $452.971, T = 7 months, and P = $95.19/unit}. Figure 3.4 indicates the

optimality of average profit of the system AV P12.
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Figure 3.4: Average profit of the system AV P12 versus duration of inventory cycle (T ) and selling-

price per unit (P )

Example 3(a)

Let C1 = $10 per order, θ = 0.2, CH = $0.5/unit/month, K1 = 2 months, K2 = 4 months, K3 = 6

months, δ1 = 20%, δ2 = 10%, δ3 = 0%, a1 = 80 units, b1 = 5 units, c1 = 0.5 units, h = 1.71 units,

CM = $120/ unit, Uc = 0.13
12
/$/month, Uf = 0.16

12
/$/month, and µ = 300 units. Then the optimal

solutions are {AV P13 = $670.85, T = 7.39 months, and P = $100.93/unit}. Figure 3.5 indicates

the optimality of average profit of the system AV P13.
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Figure 3.5: Average profit of the system AV P13 versus duration of inventory cycle (T ) and selling-

price per unit (P )

Example 4(a)

Let C1 = $10 per order, θ = 0.2, CH = $0.5/unit/month, K1 = 2 months, K2 = 4 months, K3 = 6

months, δ1 = 20%, δ2 = 10%, δ3 = 0%, a1 = 80 units, b1 = 5 units, c1 = 0.5 units, h = 1.71 units,

CM = $120/ unit, Uc = 0.13
12
/$/month, Uf = 0.16

12
/$/month, and µ = 300 units. Then the optimal

solutions are {AV P21 = $171.71, T = 5.2 months, and P = $84.22/unit}. Figure 3.6 indicates the

optimality of average profit of the system AV P21.

Figure 3.6: Average profit of the system AV P21 versus selling-price per unit (P ) and duration of

inventory cycle (T )
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Example 5(a)

Let C1 = $10 per order, θ = 0.2, CH = $0.5/unit/month, K1 = 2 months, K2 = 4 months, K3 = 6

months, δ1 = 20%, δ2 = 10%, δ3 = 0%, a1 = 80 units, b1 = 5 units, c1 = 0.5 units, h = 1.71 units,

CM = $120/ unit, Uc = 0.13
12
/$/month, Uf = 0.16

12
/$/month, and µ = 300 units. Then the optimal

solutions are{AV P22 = $361.11, T = 6 months, and P = $91.5/unit}. Figure 3.7 indicates the

optimality of average profit of the system AV P22.

Figure 3.7: Average profit of the system AV P22 versus duration of inventory cycle (T ) and selling-

price per unit (P )

Example 6(a)

Let C1 = $10 per order, θ = 0.2, CH = $0.5/unit/month, K1 = 2 months, K2 = 4 months, K3 = 6

months, δ1 = 20%, δ2 = 10%, δ3 = 0%, a1 = 80 units, b1 = 5 units, c1 = 0.5 units, h = 1.71 units,

CM = $120/ unit, Uc = 0.13
12
/$/month, Uf = 0.16

12
/$/month, and µ = 300 units. Then the optimal

solutions are{AV P23 = $634.286, T = 6.67 months, and P = $98.57/unit}. Figure 3.8 indicates

the optimality of average profit of the system AV P23.
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Figure 3.8: Average profit of the system AV P23 versus duration of inventory cycle (T ) and selling-

price per unit (P )

Case Study

This model discussed the concept of delay-in-payments and several price discount policy on pur-

chasing cost to the retailer provided by the supplier. In this model, highlighted factors are delay-

in-payments and price discount system. Any marketing companies are practical example of this

model. They offer delay-in-payments and several price discount policy to customers for increasing

their sales of products. For example, supplier offer 30 days to retailer for settling payment. If

the retailer is enable to pay the amount within 5 days, then supplier will provide 20% discount on

purchasing cost to retailer. On the other hand, if the retailer takes 15 days to pay that amount,

then the supplier will provide 10% discount on purchasing cost. Additionally after 15 days, supplier

will not provide any price discount on purchasing cost to retailer.

Numerical examples

Example 1(b)

Let C1 = $25 per order, θ = 0.12, CH = $0.6/unit/month, K1 = 2 months, δ1 = 20%, a1 = 90

units, b1 = 5.4 units, c1 = 0.4 units, h = 1.6 units, CM = $90/ unit, Uc = 0.14
12
/$/month,
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Uf = 0.17
12
/$/month, and µ = 210 units. Then the optimal solutions are {AV P11 = $211.68, T = 0.5

months, and P = $23.98/unit}. Figure 3.9 indicates the optimality of average profit of the system

AV P11.

Figure 3.9: Average profit of the system AV P11 versus duration of inventory cycle (T ) and selling-

price per unit (P )

Example 2(b)

Let C1 = $25 per order, θ = 0.11, CH = $0.6/unit/month, K2 = 4 months, δ2 = 10%, a1 = 90

units, b1 = 5.4 units, c1 = 0.4 units, h = 1.6 units, CM = $90/ unit, Uc = 0.14
12
/$/month,

Uf = 0.17
12
/$/month, and µ = 210 units. Then the optimal solutions are {AV P12 = $370.97, T = 0.8

months, and P = $36.8/unit}. Figure 3.10 indicates the optimality of average profit of the system

AV P12.
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Figure 3.10: Average profit of the system AV P12 versus duration of inventory cycle (T ) and selling-

price per unit (P )

Example 3(b)

Let C1 = $25 per order, θ = 0.1, CH = $0.6/unit/month, K3 = 6 months, δ3 = 0%, a1 = 90

units, b1 = 5.4 units, c1 = 0.4 units, h = 1.6 units, CM = $90/ unit, Uc = 0.14
12
/$/month, Uf =

0.17
12
/$/month, and µ = 210 units. Then the optimal solutions are {AV P13 = $658.46, T = 1.1

months, and P = $41.43/unit}. Figure 3.11 indicates the optimality of average profit of the system

AV P13.
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Figure 3.11: Average profit of the system AV P13 versus duration of inventory cycle (T ) and selling-

price per unit (P )

Example 4(b)

Let C1 = $25 per order, θ = 0.23, CH = $0.6/unit/month, K1 = 2 months, δ1 = 20%, a1 = 90

units, b1 = 5 units, c1 = 0.4 units, h = 1.6 units, CM = $130/ unit, Uc = 0.14
12
/$/month,

Uf = 0.17
12
/$/month, and µ = 200 units. Then the optimal solutions are {AV P21 = $169.50, T = 5.2

months, and P = $94.63/unit}. Figure 3.12 indicates the optimality of average profit of the system

AV P21.
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Figure 3.12: Average profit of the system AV P21 versus selling-price per unit (P ) and duration of

inventory cycle (T )

Example 5(b)

Let C1 = $25 per order, θ = 0.2, CH = $0.6/unit/month, K2 = 4 months, δ2 = 10%, a1 = 90

units, b1 = 5 units, c1 = 0.5 units, h = 1.6 units, CM = $130/ unit, Uc = 0.14
12
/$/month,

Uf = 0.17
12
/$/month, and µ = 200 units. Then the optimal solutions are {AV P22 = $267.72, T = 5.6

months, and P = $100.84/unit}. Figure 3.13 indicates the optimality of average profit of the system

AV P22.
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Figure 3.13: Average profit of the system AV P22 versus duration of inventory cycle (T ) and selling-

price per unit (P )

Example 6(b)

Let C1 = $25 per order, θ = 0.2, CH = $0.6/unit/month, K3 = 6 months, δ3 = 0%, a1 = 90

units, b1 = 5 units, c1 = 0.5 units, h = 1.6 units, CM = $130/ unit, Uc = 0.14
12
/$/month, Uf =

0.17
12
/$/month, and µ = 200 units. Then the optimal solutions are{AV P23 = $514.38, T = 6.4

months, and P = $109.25/unit}. Figure 3.14 indicates the optimality of average profit of the

system AV P23.
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Figure 3.14: Average profit of the system AV P23 versus duration of inventory cycle (T ) and selling-

price per unit (P )

3.4 Concluding remarks and future works

This chapter extended the research work of Sana and Chaudhuri’s (2008) model. This chapter

discussed about the optimal profit of retailer by obtaining the selling-price per and duration of

the inventory cycle. Further, this work can be extended to the multi-item inventory model with

probabilistic demand and solving by any meta-heuristic procedure.

3.5 Appendices

Appendix A1

Y1 =

(
b1
θ
− 2c1

θ2

)
Y2 =

c1
θ
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Appendix B1

S = X1θ + [(θ + Tθ2)(X2 + Y1T + Y2T
2)]

E = −(X1 +X2 + Y1T + Y2T
2)θ2

2

F =

[(
1 +

θ2T 2

2

)
(X2 + Y1T + Y2T

2)

]
−X2

Appendix C1

The Hessian matrix for AV P1i is H as follows

H =

 ∂2AV P1i

∂T 2
∂2AV P1i

∂T∂P

∂2AV P1i

∂P∂T
∂2AV P1i

∂P 2


Now, if the leading principal minors ∂2AV P1i

∂T 2 < 0 and ∂2AV P1i

∂T 2
∂2AV P1i

∂P 2 − (∂
2AV P1i

∂P∂T
)2 > 0 at the optimal

point, then H is negative definite and the function AV P1i is strictly concave.

Due to highly non-linearity of the principal minors, it can not be shown optimality by analytical

method. One can only use the condition of Hessian matrix.

For this case, second order derivatives of the profit function AV P1i are as

∂2AV P1i

∂T 2
=
−2

T 3

[
C1 + CHX1

(
t1 +

e−θt1

θ

)
− CH

b1t1
2

2θ
− CH

c1t1
3

3θ
+ CH

c1t1
2

θ2

]
+

2CH
T 3

[
X2(T

− t1) +
Y1(T

2 − t12)
2

+
Y2(T

3 − t13)
3

]
+

(X2 + Y1T + Y2T
2)

T

[UfCP
T

(eθ(T−Ki) − 1

Tθ

− eθ(T−Ki)
)

+
CH
T
eθ(T−t1) − CH

T 2

(
eθ(T−t1) − 1

θ

)
− CHθeθ(T−t1) − UfCP eθ(T−Ki)θ

]
+

2UfCP
T 3

[
X2(T −Ki)−

Y1(T
2 −Ki

2)

2
− Y2(T

3 −Ki
3)

3

]
− (Y1 + 2Y2T )

T

[
CHe

θ(T−t1)

+ UfCP e
θ(T−Ki)

]
− (X2 + Y1T + Y2T

2)

T 2
(CH + UfCP ) +

Y1
T 2

[
CH

(
eθ(T−t1) − 1

θ

)
+ UfCP

eθ(T−Ki) − 1

θ

]

∂2AV P1i

∂P 2
= −hKi

2Uc
T

,
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and

∂2AV P1i

∂P∂T
=

(hKi
2PUc − µt1)
T 2

− Uc
T 2

(
a1Ki

2

2
+
b1Ki

3

6
+
c1Ki

4

12

)
+
CHh

θT 2

(
t1 +

e−θt1 − 1

θ

)
+

CHh

θ
− UfCPh

T 2θ
(1 +Ki).

Appendix D1

The Hessian matrix for AV P2i is H as follows

H =

 ∂2AV P2i

∂T 2
∂2AV P2i

∂T∂P

∂2AV P2i

∂P∂T
∂2AV P2i

∂P 2


Now, if the leading principal minors ∂2AV P2i

∂T 2 < 0 and ∂2AV P2i

∂T 2
∂2AV P2i

∂P 2 − (∂
2AV P2i

∂P∂T
)2 > 0 at the optimal

point, then H is negative definite and the function AV P2i is strictly concave.

As the principal minors are highly non-linear, therefore it can not be provide optimality by analytical

method.

Second order derivatives of the profit function AV P2i are as

∂2AV P2i

∂T 2
=

2(P − CP )µt1
T 3

+ PUc

(
b1
3

+
c1T

2

)
− 2c1
T 3
− CHQ

T 3
− CHX2

T 2
+ CHY2

[
1− eθ(T−t1)

+
1

T

(
eθ(T−t1) − 1

θ

)]
+ CH

(X2

T
+ Y1 + Y2T

)[
θeθ(T−t1) −

(
eθ(T−t1) − 1

θT 2

)
+

(
eθ(T−t1)

T

)]
− CH

T
(Y1 + 2Y2T )eθ(T−t1) +

(
eθ(T−t1) − 1

θ

)[CH
T 2

(Y1

+ 2Y2T )− 2Y2CH
T

]
,

∂2AV P2i

∂P 2
= −hUc

2
(T + 1),

and

∂2AV P2i

∂P∂T
= Uc

[
(a1 − hP )

2
+
b1T

3
+
c1T

2

4
− µt1(Ki − T )

T 2
− µt1

T
− hP

]
− µt1
T 2

As the above mentioned profit function is a non-linear equation and second order derivatives of

AV P2i with respect to P and T are extremely complicated. Hence the closed form solution cannot
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be obtained. However, by means of empirical experiments, one can indicate that above equation is

concave for small value of P and T .


