
Chapter 2

Variable demand in a warehouse model ∗

2.1 Introduction

It is common phenomena that demand is increasing with the increasing time. There are many

products for which demand rate depends on time. Demand of items may increase or decrease with

time. Many mathematical models have been developed to control inventory by considering constant

demand rate while in most of the cases, demand of items increase with time. Harris (1913) first

discovered an EOQ for constant demand pattern. Regarding demand as time-dependent, many

researchers formulated several inventory models. Hsu and Li (2006) discussed an inventory model

for time varying consumer demand. Dye et al. (2006) observed an inventory model by including

not only cost of lost sales, but also the non-constant purchase cost. They extended their model

from a constant demand to any log-concave demand function. Khanra et al. (2011) developed an

inventory system with time varying demand and delay-in-payments. Sarkar et al. (2011a) formed

a production-inventory model where demand is assumed as continuous as well as discrete random.

∗A part of this work, presented in this chapter, is published in Hacettepe Journal of Mathematics and Statistics,

46(5), 985-1014, 2017.
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The defective products are repaired with some fixed cost. Sarkar and Moon (2011) extended Sarkar

et al.’s (2011a) model with the effect of inflation. They highlighted imperfect items which are re-

worked at some fixed costs and considered shortages due to the production of imperfect products.

The lifetime of defective items followed a Weibull distribution. Sarkar et al. (2011b) studied an

imperfect production model which produces a single type of items. Their model formulated by

time-dependent demand with reliability as a decision variable for inflation and also time value of

money.

The loss due to deterioration of items like vegetable, or commodities cannot be ignored. The

growth and application of inventory control models regarding deterioration of products is the main

concerns of researcher. Many previous studies have been done in this field by assuming constant

deterioration. But deterioration of item may vary with time. Using present value concept, many

researchers stated about the distribution processing for deterioration. Wee and Law (2001) dis-

cussed an inventory model with time-value of money, deterioration, and price-dependent demand.

Chu and Chen (2002) developed the inventory holding cost is in proportion to the cost for deteri-

orated items. By describing time-dependent deterioration, Khanra and Chaudhuri (2003) invented

an order-level inventory problem on continuous and quadratic function of time-dependent demand.

In their model for infinite and finite time-horizon, the solution of model was discussed analytically.

Chern et al. (2008) extended previous inventory model by allowing general partial backlogging

rate and inflation. Sett et al. (2012) depicted a two-warehouse inventory system with quadratic

demand which is useful for those items whose demand increases very rapidly. Their study discussed

about time varying deterioration rates. Sarkar et al. (2012) formulated an optimal inventory re-

plenishment policy with time varying demand and time varying partial backlogging. Sarkar (2012b)

constructed an inventory model for time varying demand and deterioration rate. Sarkar and Sarkar
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(2013a) developed an inventory model for time-dependent deterioration rate. Their study discussed

about inventory-dependent demand function. They considered three possible cases for demand and

inventory. Sarkar and Sarkar (2013b) extended earlier literature for infinite replenishment rate by

incorporating partial backlogging, stock varying demand, and time dependent deterioration. Sarkar

(2013) presented a production model along with SCM. Sarkar and Sarkar (2013c) extended an EMQ

model with deterioration and exponential demand. Sarkar et al. (2013) discussed a deteriorating

inventory system for deteriorating products and time dependent demand. Sarkar et al. (2015)

depiced an inventory system with both full and partial trade-credit policy.

Pricing is also an important factor in success of business for any item. In general, when selling-

price of items decreases, customers are more attracted to that product. Hence, demand rate of

products may consider based on price. Wee (1997) analyzed an inventory system for price varying

demand of items with variable deterioration and completely backorder. Datta and Paul (2001)

derived an inventory model where demand rate was affected by price and stock-level. Goyal and

Chang (2009) obtained an ordering-transfer inventory model that provides limited display space and

stock-level-dependent demand rate. Sarkar et al. (2010a) discovered an inventory model under the

assumption that retailers are allowed a period by supplier to obtain trade-credit for goods bought

with some discount rates. They developed retailer’s optimal replenishment decision under trade-

credit policy with inflation. They assumed several types of deterministic demand patterns with the

delay-periods and different discounts rates on purchasing cost. Sarkar et al. (2010b) developed an

imperfect production process for stock-dependent demand. These imperfect items were reworked at

some fixed cost for restoring its original quality. In addition, in their model unit production cost is a

function of reliability parameter and production rate. Sana (2011) investigated an inventory model

to obtain retailer’s optimal order quantity with limited display space. In his article, demand of



4 CHAPTER 2. VARIABLE DEMAND IN A WAREHOUSE MODEL

products depends on selling-price, salesmen’s initiatives and display stock-level where more stocks

of one product forms a negative impact of another products. Sarkar (2012c) assumed an imperfect

production process with price and advertising demand pattern under the effect of inflation. To

reduce the production of imperfect items, development cost, production cost, and material cost are

dependent on reliability in his model. Sarkar (2012a) deduced an inventory framework in which

supplier generally offers a delay-period to the retailer to buy more. In this point of view, permis-

sible delay-in-payments are considered along with stock-dependent demand, finite replenishment

rate, and the production of defective items. See Table 2.1 for contribution of various authors.

Table 2.1: Contribution of various authors

Author(s) Time- Price- Other Random Other

dependent dependent demands deterio- deterio-

demand demand rations rations

Harris (1913)
√

Wee (1997)
√ √

Datta and Paul (2001)
√

Wee and Law (2001)
√ √

Chu and Chen (2002)
√ √

Khanra and

Chaudhuri (2003)
√ √

Dye et al. (2006)
√ √

Hsu and Li (2006)
√

Chern et al. (2008)
√ √
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Author(s) Time- Price- Other Random Other

dependent dependent demands deterio- deterio-

demand demand rations rations

Goyal and

Chang (2009)
√

Sarkar et al. (2010a)
√

Sarkar et al. (2010b)
√

Khanra et al. (2011)
√ √

Sana (2011)
√ √

Sarkar et al. (2011a)
√ √

Sarkar et al. (2011b)
√ √

Sarkar and

Moon (2011)
√ √

Sett et al. (2012)
√ √

Sarkar et al. (2012)
√ √

Sarkar (2012a)
√

Sarkar (2012b)
√ √

Sarkar (2012c)
√ √

Sarkar (2013)
√ √

Sarkar et al. (2013)
√ √

Sarkar and Sarkar

(2013a)
√
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Author(s) Time- Price- Other Random Other

dependent dependent demands deterio- deterio-

demand demand rations rations

Sarkar and Sarkar

(2013b)
√ √

Sarkar and Sarkar

(2013c)
√ √

Sarkar et al. (2014)
√

This chapter
√ √ √

This chapter presents an inventory model for probabilistic deteriorating rate with several

demand function as time and price-dependent, and finite production rate. The display space is

taken to be limited. This model includes the number of transfer per order from the warehouse to

display area. The main objective of this model is to maximize average profit function over finite

planning horizon and obtain the optimal order quantity and the number of transfer per order. In

this chapter, there are four cases of demand functions. The average profit function is maximized in

each case. Numerical examples and sensitivity analysis are buildup for each demand functions.

2.2 Mathematical model

Following notation are used to formulate this model.

Decision variables

t1 replenishment cycle time in display area (year)

n integer number of shipments for stocks from warehouse to display area per order
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p unit selling-price of stocks per unit ($/unit)

Parameters

h1 unit carrying cost per stock in warehouse ($/unit/unit time)

h unit carrying cost per stock in display area, where h > h1 ($/unit/unit time)

c unit purchasing cost ($/unit)

S retailer’s ordering cost per order ($/order)

s fixed cost of stocks per transfer to display area from warehouse ($/transfer)

T replenishment cycle time in warehouse

Q order quantity placed to the supplier (units)

I(t) inventory level at time t in the display area

R fixed inventory level of stocks in display area for transferring of q items reducing stockout

q stock per transfer to display area from warehouse (units/transfer)

D demand function considered as time-dependent, price-dependent, and time-price-dependent

θ probabilistic deterioration rate, 0 < θ < 1

AP1 average profit for demand function D(t, p) = x+ x1 + yt− y1p+ zt2 − z1p2

AP2 average profit while demand function is D(t) = x+ yt+ zt2

AP3 average profit for demand function D(p) = x1 − y1p− z1p2

AP4 average profit when demand function is D(t) = x2e
y2t
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This model is formulated on the basis of following assumptions

1. The model consider a warehouse problem with random deterioration rate θ which follows a

uniform distribution.

The probability density function of deterioration is

f(X) =


1
b−a , if X ∈ [a, b]

0, otherwise


where a and b(> a) are two parameters of this distribution and 0 < a < b < 1.

Therefore, θ = E[f(X)] = b+a
2

.

2. The retailer places an order of quantity Q from a supplier and stores them into the warehouse.

These items are transferred to display area from warehouse in equal lots of q until inventory

level in warehouse reaches to zero.

3. The transferring time of stocks from warehouse to display area is taken as negligible.

4. The demand function as follows

D(t, p) = x+ x1 + yt− y1p+ zt2 − z1p2, D(t) = x+ yt+ zt2,

D(p) = x1 − y1p − z1p2, and D(t) = x2e
y2t. x, y, and z are beginning rate, increasing rate,

and rate of change for demand in first and second demand function respectively. x1, y1, and

z1 are initial rate, decreasing rate, and rate of change for demand in first and third demand

function separately. x2 is constant parameter and y2 is increasing rate of demand regarding

fourth demand function.

5. Lead time is considered as negligible and shortages are not allowed.

Here, an inventory model related with warehouse and display area are considered. Two types of

costs (warehouse cost and display area cost) are given. These costs are used to calculate the profit
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of the model.

Warehouse cost

When the retailer orders Q items from the supplier, it is instantly supplied to the retailer and

the retailer stocks all the items in the warehouse. Now, the items Q can be divided into q equal

parts i.e., Q = nq and a part is transferred to the display area when the previous part has just been

depleted. The process will continue until the inventory at the warehouse reaches at zero level.

Retailer’s ordering cost per order is = S.

During the time interval [0, t1], total item is

[q + 2q + 3q + ............+ (n− 1)q]t1 =
n(n− 1)qt1

2
.

Hence, the stock holding cost is = h1t1
n(n−1)

2
q.

Cost at display area

At the time t = 0, the level of inventory I(t) starts with a maximum inventory say Ī and then

it reaches to R at the end of cycle t1. Figure 2.1 represents the inventory system.

Case I

In this case, demand rate is considered as a function of price and time. As demand may increase

when the selling-price diminishes and vice-versa or it may fluctuate with the change of time. The

consideration of time and price-dependent demand is useful for deteriorated items, for example,

fashionable goods, fruits, and vegetables. This study discussed an inventory model by assuming

demand as a quadratic function of time and price.

i.e.,

f(t, p) = D(t, p) = (x+ yt+ zt2) + (x1 − y1p− z1p2)

= x+ x1 + yt− y1p+ zt2 − z1p2
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Figure 2.1: Graphical representation of inventory system

The governing differential equation of this inventory model is

dI(t)

dt
+ θI(t) = −f(t, p), 0 ≤ t ≤ t1, I(t1) = R

= −(x+ x1 + yt− y1p+ zt2 − z1p2)

Using the boundary condition, inventory level I(t) as

I(t) =
(1− eθ(t1−t))

θ
(y1p+ z1p

2 − x− x1) + y
((t1e

θ(t1−t) − t)
θ

− (eθ(t1−t) − 1)

θ2

)
+ z

((t1
2eθ(t1−t) − t2)

θ
− (2t1e

θ(t1−t) − 2t)

θ2
+

(2eθ(t1−t) − 2)

θ3

)
+Reθ(t1−t)

During [0,t1], the total costs are as follows:

(i) Fixed cost of stocks per transfer to display area from warehouse is = s.

(ii) Holding cost is

= h

∫ t1

0

I(t)dt =
hR(eθt1 − 1)

θ
+
h(y1p+ z1p

2 − x− x1)
θ

(
t1 +

(1− eθt1)
θ

)
+ hy

(t1eθt1
θ2

+
(1− eθt1)

θ3
− t1

2

2θ

)
+ hz

(t12eθt1
θ2

− 2t1e
θt1

θ3
+

(2eθt1 − 2)

θ4
− t1

3

θ3

)
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(iii) The revenue per cycle is

= (p− c)
∫ t1

0

D(t, p)dt = (p− c)
∫ t1

0

(x+ x1 + yt− y1p+ zt2 − z1p2)dt

= (p− c)
(

(x+ x1 − y1p− z1p2)t1 +
yt1

2

2
+
zt1

3

3

)

Equating equation of I(t) and I(0)=q+R, we obtain

q =
(1− eθt1)

θ
(y1p+ z1p

2 − x− x1) + y
(t1eθt1

θ
− (eθt1 − 1)

θ2

)
+ z
(t12eθt1

θ
− 2t1e

θt1

θ2

+
(2eθt1 − 2)

θ3

)
+Reθt1 −R

(iv) Stock holding cost in the warehouse is

= h1

[
n(n− 1)

2
q

]
t1 = h1

[n(n− 1)

2

((1− eθt1)
θ

(y1p+ z1p
2 − x− x1) + y

(
t1e

θt1

θ
− (eθt1 − 1)

θ2

)
+ z

(t12eθt1
θ
− 2t1e

θt1

θ2
+

(2eθt1 − 2)

θ3

)
+Reθt1 −R

)]
t1

Thus, the average profit per unit time is

AP1(n, p, t1) = 1
T

[revenue-(total cost in warehouse)-(total cost in display area)] (T=nt1)

= (p− c)
(

(x+ x1 − y1p− z1p2) +
yt1
2

+
zt1

2

3

)
−
[
h1

((n− 1)

2

((1− eθt1)
θ

(y1p+ z1p
2

− x− x1) + y

(
t1e

θt1

θ
− (eθt1 − 1)

θ2

)
+ z
(t12eθt1

θ
− 2t1e

θt1

θ2
+

(2eθt1 − 2)

θ3

)
+Reθt1 −R

))
+

S

nt1

]
− s

t1
− h
[R(eθt1 − 1)

θt1
+ y
(eθt1
θ2

+
(1− eθt1)
θ3t1

− t1
2θ

)
+

(y1p+ z1p
2 − x− x1)
θ

(
1

+
(1− eθt1)

θt1

)
+ z

(
t1e

θt1

θ2
− 2eθt1

θ3
+

(2eθt1 − 2)

θ4t1
− t1

2

θ3

)]

which is to maximize the total profit function. Thus, a lemma is formulated to obtain the global

optimum solution.
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Lemma 1

AP1(n
∗, p∗, t1

∗) will have the global maximum solution where n∗, p∗, and t1
∗ are optimal values

of n, p, and t1 if following conditions are satisfied

(i)4Sθ < h1n
3t1(1− eθt1)(y1 + 2z1p),

(ii)4z1p+
h1
2

(1− eθt1)
θ

(y1 + 2z1p) > 2
[
cz1 − y1 −

z1
θ

(h1(n− 1)

2
(1− eθt1) + h

(
1− eθt1
θt1

+ 1

))]
,

(iii)h1
(eθt1 − 1)

θ
(y1 + 2z1p)M < N

(
h1
2
U +

s

t1
2

)
,

(iv)

(
y

2
+

2zt1
3

)
+
h

θ

(
eθt1

t1
+

(1− eθt1)
θt1

2

)
<
h1(1− n)

2
(y1 + 2z1p)e

θt1 .

[See Appendix A for the values of M , N , and U .]

Proof

The necessary condition for optimal solution of AP1(n, p, t1) can be calculated by

∂AP1(n,p,t1)
∂n

= 0, ∂AP1(n,p,t1)
∂p

= 0, and ∂AP1(n,p,t1)
∂t1

= 0. i.e.,

∂AP1(n, p, t1)

∂n
=

S

n2t1
2
− h1

2

[(1− eθt1)
θ

(y1p+ z1p
2 − x− x1) + y

(t1eθt1
θ
− (eθt1 − 1)

θ2

)
+ z

(
t1

2eθt1

θ
− 2t1e

θt1

θ2
+

2(eθt1 − 1)

θ3

)
+Reθt1 −R

]
= 0

The equation ∂AP1(n,p,t1)
∂n

gives n =
√

2S
h1t1f

. [See Appendix B for the value of f ].

For the decision variable p,

∂AP1(n, p, t1)

∂p
= 0

∂AP1(n, p, t1)

∂p
= 2z1p

2 − 2p

[
cz1 − y1 −

z1
θ

(
h1(n− 1)

2
(1− eθt1) + h

(
(1− eθt1)

θt1
+ 1

))]
−
[
x

+ x1 +
yt1
2

+
zt1

2

3
+ cy1 −

y1
θ

(
h1(n− 1)

2
(1− eθt1) + h

(
(1− eθt1)

θt1
+ 1

))]
= 0
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Now p∗ will be calculated if η(p∗) = 0 where ∂AP1(n,p,t1)
∂p

= η(p).

and ∂AP1(n,p,t1)
∂t1

= 0 gives

i.e.,
∂AP1(n, p, t1)

∂t1
=

(
y

2
+

2zt1
3

)
+
h1(n− 1)

2
(y1p+ z1p

2 − x− x1)eθt1 − (yt1e
θt1 + zt1

2eθt1

+ Rθeθt1)
h1(n− 1)

2
+

(S + sn)

t1
2
− h
[Reθt1

t1
− (y1p+ z1p

2 − x− x1)
θ

(eθt1
t1

+
(1− eθt1)
θt1

2

)
− (Reθt1 − 1)

θt1
2

+ y
(eθt1
θ
− eθt1

θ2t1
− (1− eθt1)

θ3t1
2
− 1

2θ

)
− z
(eθt1
θ2

− t1e
θt1

θ
− 2eθt1

θ3t1
+

2t1
θ3

+
2(eθt1 − 1)

θ4t1
2

)]
= 0

Now t1
∗ will be calculated if ξ1(t1

∗) = 0 where ∂AP1(n,p,t1)
∂t1

= ξ1(t1).

To verify the sufficient conditions for global optimum solution, the second order partial derivatives

of AP1(n, p, t1) with respect to n, p, and t1 are as follows:

∂2AP1(n, p, t1)

∂n2
=
−2S

n3t1
,

∂2AP1(n, p, t1)

∂t1
2

=
2z

3
+
h1(n− 1)

2
θ(y1p+ z1p

2 − x− x1)eθt1 − (y + yθt1 + 2zt1 + zt1
2θ

+ Rθ2)
h1(n− 1)

2
eθt1 − 2(S + sn)

t1
3

− h
[Rθeθt1

t1
− 2R(eθt1 − 1)

θt1
3

+
(2eθt1

t1
2

− θeθt1

t1
+

2(1− eθt1)
θt1

3

)(y1p+ z1p
2 − x− x1)
θ

+ y
(
eθt1 − eθt1

θt1
+

2eθt1

θ2t21

+
2(1− eθt1)
θ3t1

3

)
+ z
(
t1e

θt1 +
2eθt1

θ2t1
− 4eθt1

θ3t1
2

+
4(eθt1 − 1)

θ4t1
3
− 2

θ3

)]
,

∂2AP1(n, p, t1)

∂p2
= 4z1p− 2

[
cz1 − y1 −

z1
θ

(
h1(n− 1)

2
(1− eθt1) + h

(
(1− eθt1)

θt1
+ 1

))]
,

∂2AP1(n, p, t1)

∂n∂t1
=

h1
2
eθt1(y1p+ z1p

2 − x− x1 − yt1 − zt12 −Rθ)
s

t1
2
,

∂2AP1(n, p, t1)

∂p∂t1
=

(
y

2
+

2zt1
3

)
+
h1(n− 1)

2
(y1 + 2z1p)e

θt1 +
h(y1 + 2z1p)

θ

(
eθt1

t1
+

(1− eθt1)
θt1

2

)
,

and

∂2AP1(n, p, t1)

∂n∂p
=

h1
2

(
(y1 + 2z1p)

(eθt1 − 1)

θ

)
.
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The sufficient condition for global optimum solution for this case is all principal minors are alter-

nating in sign.

i.e., the sufficient condition for the optimum solution of AP1(n, t1) are ∂2AP1(n,p,t1)
∂n2 < 0, ∂2AP1

∂n2
∂2AP1

∂p2
−

(∂
2AP1

∂n∂p
)2 > 0, and the value of third principal minor i.e., the value of the Hessian matrix H < 0.

Now, ∂2AP1(n,p,t1)
∂n2 = −2S

n3t1
< 0.

To show the condition of second principal minor, if ∂2AP1

∂n2 > ∂2AP1

∂n∂p
and ∂2AP1

∂p2
> ∂2AP1

∂n∂p
, then the

condition holds.

Now, ∂2AP1(n,p,t1)
∂n∂p

= h1
2

(
(y1 + 2z1p)

(eθt1−1)
θ

)
.

which can be written as

∂2AP1(n, p, t1)

∂n∂p
=

∂2AP1(n, p, t1)

∂n2
− ξ1.

where

ξ1 =
h1
2

(1− eθt1)
θ

(y1 + 2z1p)−
2S

n3t1

In this case, ∂2AP1

∂n2 > ∂2AP1

∂n∂p
will hold if ξ1 > 0.

Now ξ1 > 0 exists, when

4Sθ < h1n
3t1(1− eθt1)(y1 + 2z1p)

Similarly,

∂2AP1(n, p, t1)

∂n∂p
=

∂2AP1(n, p, t1)

∂p2
− ξ2

where

ξ2 = N +
h1
2

(1− eθt1)
θ

(y1 + 2z1p)
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Now ∂2AP1

∂p2
> ∂2AP1

∂n∂p
will exist if ξ2 > 0.

i.e., if

2

[
cz1 − y1 −

z1
θ

(
h1(n− 1)

2
(1− eθt1) + h

(
1− eθt1
θt1

+ 1

))]
< 4z1p+

h1(1− eθt1)(y1 + 2z1p)

2θ

Similar as above, value of third principal minor i.e., H < 0 will hold if

h1
(eθt1 − 1)

θ
(y1 + 2z1p)M < N

(
h1
2
U +

s

t1
2

)

and (
y

2
+

2zt1
3

)
+
h

θ

(
eθt1

t1
+

(1− eθt1)
θt1

2

)
<
h1(1− n)

2
(y1 + 2z1p)e

θt1

Therefore, AP1(n
∗, p∗, t1

∗) will have the global maximum (where n∗, p∗, and t1
∗ are optimal values

of n, p, and t1) if the conditions hold.

Case II

This section provides demand function is time-dependent. As time increases, the demand of each

product increases. To show this matter, the demand is considered as quadratic function of time.

For the demand function f(t) = D(t) = x+ yt+ zt2

The governing differential equation of this inventory model is

dI(t)

dt
+ θI(t) = −f(t), 0 ≤ t ≤ t1, I(t1) = R

= −(x+ yt+ zt2)

Using the boundary condition, the inventory level I(t) as

I(t) = Reθ(t1−t) + (1− eθ(t1−t))
(
y

θ2
− 2z

θ3
− x

θ

)
+ (t1e

θ(t1−t) − t)
(
y

θ
− 2z

θ2

)
− z

θ

(
t2 − t12eθ(t1−t)

)
During [0,t1], the total costs are as follows:

(i) Fixed cost of stocks per transfer to display area from warehouse = s.
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(ii) Holding cost is

= h

∫ t1

0

I(t)dt =
−hR(1− eθt1)

θ
+ h

(
y

θ2
− 2z

θ3
− x

θ

)(
t1 +

(1− eθt1)

θ

)
− h
(t1(1− eθt1)

θ

+
t21
2

)(y
θ
− 2z

θ2

)
− hz

θ

(t12(1− eθt1)
θ

+
t1

3

3

)
(iii) The revenue per cycle is

= (p− c)
∫ t1

0

D(t)dt = (p− c)
∫ t1

0

(x+ yt+ zt2)dt = (p− c)
(
xt1 + y

t21
2

+ z
t31
3

)

From I(0)=q+R, one has

q +R = Reθt1 + (1− eθt1)
(
y

θ2
− 2z

θ3
− x

θ

)
+ t1e

θt1

(
y

θ
− 2z

θ2

)
+
z

θ
t1

2eθt1

i.e., q = Reθt1 + (1− eθt1)
(
y

θ2
− 2z

θ3
− x

θ

)
+ t1e

θt1

(
y

θ
− 2z

θ2

)
+
z

θ
t1

2eθt1 −R

(iv) Stock holding cost in the warehouse is

= h1

[
n(n− 1)

2
q

]
t1 = h1

[n(n− 1)

2

(
Reθt1 + (1− eθt1)

(
y

θ2
− 2z

θ3
− x

θ

)
+ t1e

θt1

(
y

θ
− 2z

θ2

)
+
z

θ
t1

2eθt1 −R
)]
t1

The average profit function per unit time is

AP2(n, t1) = 1
T

[revenue-(total cost in warehouse)-(total cost in display area)] (where T=nt1)

= (p− c)
(
x+ y

t1
2

+ z
t21
3

)
−
[ S
nt1

+ h1

((n− 1)

2

(
Reθt1 + (1− eθ(t1−t))

(
y

θ2
− 2z

θ3
− x

θ

)
+ t1e

θt1

(
y

θ
− 2z

θ2

)
+
z

θ
t1

2eθt1 −R
))]
− s

t1
− h
[
− R(1− eθt1)

θt1
+

(
y

θ2
− 2z

θ3
− x

θ

)(
1

+
(1− eθt1)

θt1

)
−
(

(1− eθt1)
θ

+
t1
2

)(
y

θ
− 2z

θ2

)
− z

θ

(t21
3

+
t1(1− eθt1)

θ

)]

which is to maximize with respect to the decision variables n and t1. We have made the following

lemma to make the global optimum solution for it.
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Lemma 2

AP2(n
∗, t1

∗) will have the global maximum (where n∗ and t1
∗ are optimal values of n and t1) if

following conditions are satisfied

(i)
S

n2t21
+
h

2
eθt1

(
zt1

2 +

(
y +

2z

θ

)
t1 +

(
Rθ +

y

θ

))
>

2S

n3t1
+ heθt1

(z(θt1 + 1)

θ2
+
e−θt

(
y
θ
− 2z

θ2
− x
)

2

)
and

(ii)
2(p− c)z

3
+

2hz

3θ
+

S

n2t1
2

+ αeθ(t1−t) + (β + γ)eθt1 + δ >
2

t1
3

(
S

n
+ s

)
+
h1Re

θt1θ

2
[(n− 1)θ − 1]

Proof

From the necessary condition of the optimal solution, ∂AP2(n,t1)
∂n

= 0.

i.e.,

∂AP2(n, t1)

∂n
=

S

n2t1
− h1

2

[
Reθt1 + (1− eθt1)

(
y

θ2
+

2z

θ3
− x

θ

)
+ t1e

θt1
(y
θ

+
2z

θ2

)
+
zt21e

θt1

θ

− R
]

= 0

which gives

n =

√√√√ 2S

h1t1(Reθt1 + (1− eθt1)
(
y
θ2

+ 2z
θ3
− x

θ

)
+ t1eθt1

(
y
θ

+ 2z
θ2

)
+

zt21e
θt1

θ
−R)

For the second decision variable t1,
∂AP2(n,t1)

∂t1
= 0 gives

i.e., a1t1
6 + a2t1

5 + a3t1
4 + a4t1

3 + a5t1
2 + a6 = 0

[See Appendix C for the values of α, β, γ, δ, a1, a2, a3, a4, a5, and a6.]

Now t1
∗ will be obtained if ξ2(t1

∗) = 0 where ∂AP2(n,t1)
∂t1

= ξ2(t1).

To obtain the global maximum, one has to check the sufficient conditions. Thus, the second order

partial derivatives of AP2(n, t1) with respect to n and t1 are calculated which are as follows:

∂2AP2(n, t1)

∂n2
=
−2S

n3t1
,
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∂2AP2(n, t1)

∂t1
2

=
∂2λ1
∂t1

2
+
∂2λ2
∂t1

2

where

∂2λ1
∂t1

2
=

2(p− c)z
3

− 2S

nt1
3
− h1(n− 1)

2

[
Rθ2eθt1 −

(y
θ
− 2z

θ2
− x
)
eθ(t1−t)θ +

(y
θ
− 2z

θ2

)
eθt1θ(t1θ

+ 2) +
z

θ
eθt1(4t1θ + t1

2θ2 + 2)
]

and

∂2λ2
∂t1

2
=

hR

θ

[
2(1− eθt1)

t1
3

+
2θeθt1

t1
2
− θ2eθt1

t1

]
− 2s

t31
− h

(
y

θ2
− 2z

θ3
− x

θ

)[2eθt1

t1
2

+
2(1− eθt1)

θt1
3

− θeθt1

t1

]
− h

(
y − 2z

θ

)
eθt1 +

hz

θ

(
−t1θeθt1 − 2eθt1 +

2

3

)
.

∂2AP2(n, t1)

∂n∂t1
= − S

n2t1
2
− h1

2

[
Rθeθt1 −

(
y

θ
− 2z

θ2
− x
)
eθ(t1−t) +

(y
θ
− 2z

θ2

)
eθt1(1 + θt1)

+
z

θ
t1e

θt1(θt1 + 2)
]

The sufficient conditions for the optimum solution of AP2(n, t1) are ∂2AP2(n,t1)
∂n2 < 0 and ∂2AP2

∂n2
∂2AP2

∂t12
−

(∂
2AP2

∂n∂t1
)2 > 0.

Now

∂2AP2(n, t1)

∂n2
=
−2S

n3t1
< 0

We have to show ∂2AP2

∂n2
∂2AP2

∂t12
− (∂

2AP2

∂n∂t1
)2 > 0.

For the proof of this above condition, if ∂2AP2

∂n2 > ∂2AP2

∂n∂t1
and ∂2AP2

∂t12
> ∂2AP2

∂n∂t1
, then the conditions hold.

Now

∂2AP2(n, t1)

∂n∂t1
= − S

n2t1
2
− h1

2

[
Rθeθt1 −

(
y

θ
− 2z

θ2
− x
)
eθ(t1−t) +

(y
θ
− 2z

θ2

)
eθt1(θt1 + 1)

+
z

θ
t1e

θt1(θt1 + 2)
]
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which can be written as

∂2AP2(n, t1)

∂n∂t1
=

∂2AP2(n, t1)

∂n2
− ξ3.

where

ξ3 =
S

n2t1
2

+
h1
2

[
Rθeθt1 −

(
y

θ
− 2z

θ2
− x
)
eθ(t1−t) +

(
y

θ
− 2z

θ2

)
eθt1(θt1 + 1) +

z

θ
t1e

θt1(θt1 + 2)

]
− 2S

n3t1

∂2AP2

∂n2 > ∂2AP2

∂n∂t1
will hold if ξ3 > 0.

Now ξ3 > 0 will exist if

S

n2t21
+
h

2
eθt1

(
zt1

2 +

(
y +

2z

θ

)
t1 +

(
Rθ +

y

θ

))
>

2S

n3t1
+ heθt1

(
z(θt1 + 1)

θ2
+
e−θt

(
y
θ
− 2z

θ2
− x
)

2

)

Similarly,

∂2AP2(n, t1)

∂n∂t1
=

∂2AP2(n, t1)

∂t1
2

− ξ4

where

ξ4 =
2(p− c)z

3
− 2S

nt1
3
− h1(n− 1)

2

[
Rθ2eθt1 −

(
y

θ
− 2z

θ2
− x
)
eθ(t1−t)θ +

(y
θ
− 2z

θ2

)
eθt1θ(t1θ

+ 2) +
z

θ
eθt1(4t1θ + t1

2θ2 + 2)
]
− 2s

t31
+
hR

θ

[2(1− eθt1)
t1

3
+

2θeθt1

t1
2
− θ2eθt1

t1

]
− h
( y
θ2
− 2z

θ3

− x

θ

)[2eθt1

t1
2

+
2(1− eθt1)

θt1
3

− θeθt1

t1

]
− h

(
y − 2z

θ

)
eθt1 +

hz

θ

(
−t1θeθt1 − 2eθt1 +

2

3

)
+

S

n2t1
2

+
h1
2

[
Rθeθt1 −

(
y

θ
− 2z

θ2
− x
)
eθ(t1−t) +

(
y

θ
− 2z

θ2

)
eθt1(θt1 + 1) +

z

θ
t1e

θt1(θt1 + 2)
]

Now ∂2AP2

∂t12
> ∂2AP2

∂n∂t1
will exist if ξ4 > 0.

i.e., if

2(p− c)z
3

+
2hz

3θ
+

S

n2t1
2

+ αeθ(t1−t) + (β + γ)eθt1 + δ >
2

t1
3

(
S

n
+ s

)
+
h1Re

θt1θ

2
[(n− 1)θ − 1]
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Therefore, AP2(n
∗, t1

∗) will have the global maximum (where n∗ and t1
∗ are optimal values of n

and t1) if the conditions hold.

Case III

In this section, demand of products is a function of selling-price. In general, selling-price decreases

means demand of products increases and vice-versa. Customers are more affective to that product

whose selling-price is low. Therefore, demand can be a function of selling-price. Here, demand is

taken to be as quadratic function of selling-price.

The demand function is f(p) = D(p) = x1 − y1p− z1p2

The governing differential equation of this inventory model is

dI(t)

dt
+ θI(t) = −f(p), 0 ≤ t ≤ t1, I(t1) = R

= −(x1 − y1p− z1p2)

Utilizing the boundary condition, the inventory level I(t) as

I(t) = Reθ(t1−t) +
(x1 − y1p− z1p2)(eθ(t1−t) − 1)

θ

During [0,t1], the total costs are as follows:

(i) Fixed cost of stocks per transfer to display area from warehouse = s.

(ii) Holding cost is

= h

∫ t1

0

I(t)dt = hR
(eθt1 − 1)

θ
+
h(x1 − y1p− z1p2)

θ

(
(eθt1 − 1)

θ
− t1

)

(iii) The revenue per cycle is

= (p− c)
∫ t1

0

D(p)dt = (p− c)
∫ t1

0

(x1 − y1p− z1p2)dt = (p− c)(x1 − y1p− z1p2)t1
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Using I(0)=q+R, one has

q +R = Reθt1 + (x1 − y1p− z1p2)
(eθt1 − 1)

θ

i.e., q = Reθt1 + (x1 − y1p− z1p2)
(eθt1 − 1)

θ
−R

(iv) Stock holding cost in the warehouse is

= h1

[
n(n− 1)

2
q

]
t1 = h1t1

n(n− 1)

2
[Reθt1 + (x1 − y1p− z1p2)

(eθt1 − 1)

θ
−R]

The average profit function per unit time is

AP3(n, p, t1)=
1
T

[revenue-(total cost in warehouse)-(total cost in display area)] (where T=nt1)

= (p− c)(x1 − y1p− z1p2)−
( S

nt1
+ h1

(n− 1)

2
[Reθt1 +

(eθt1 − 1)

θ
(x1 − y1p− z1p2)

− R]
)
− s

t1
− h
[
R

(eθt1 − 1)

θt1
− (x1 − y1p− z1p2)

θ

(
1− (eθt1 − 1)

θt1

)]
AP3(n, p, t1) is to maximize with respect to the decision variables n, p, and t1. To obtain the global

optimum solution, Lemma 3 is formulated.

Lemma 3

AP3(n
∗, p∗, t1

∗) will have the global maximum (where n∗, p∗, and t1
∗ are optimal values of n, p, and

t1) if following conditions are satisfied.

(i)4Sθ > n3t1(e
θt1 − 1)h1(2z1p− y),

(ii)
2z1θ

(
h
θ

+ 3p
)

(eθt1 − 1)
>

[
h1

(
z1(n− 1 + p)− y1

2

)
+

2z1θ

θt1

]
,

and

(iii)

[
1 +

sn

S
+
nt1

3

2S

(
(n− 1)θ2eθt1

2
+ h

)(
R +

D(p)

θ

)]
l1l3 +

nt1
3

2S

(
l3l4

2

+hh1
2
(y1

2
+ z1p

2
)2 )

< l5
2 +

nt1
3h1
S

(y1
2

+ z1p
)
l4l5.
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[See Appendix D for the values of D(p), l1, l2, l3, l4, and l5.]

Proof

From the necessary conditions of the optimal solution, ∂AP3(n,p,t1)
∂n

= 0.

i.e.,

∂AP3(n, p, t1)

∂n
=

S

n2t1
2
− h1

2

[
Reθt1 +D(p)

(eθt1 − 1)

θ
−R

]
= 0

which gives

n =

√√√√ 2S

h1t1
2
[
Reθt1 +D(p) (e

θt1−1)
θ
−R

]
For the decision variable p, ∂AP3(n,p,t1)

∂p
= 0 gives

i.e., p =
θ(2y1 − cy1 − x1 − 2cz1)

2z1

[
h1(n−1)

2
(eθt1−1)

θ
− h

(
(eθt1−1)
θt1

− 1
)]

For another decision variable t1,
∂AP3(n,p,t1)

∂t1
= 0 gives

i.e.,
S + n2s2

t1
2

=

(
R +

D(p)

θ

)[
h1(n− 1)

2
θeθt1 − h

(
eθt1

t1
− (eθt1 − 1)

θt1
2

)]
Now t1

∗ will be obtained if ξ3(t1
∗) = 0, where ∂AP3(n,p,t1)

∂t1
= ξ3(t1).

To obtain the sufficient conditions, the second order partial derivatives of AP3(n, p, t1) with respect

to n and t1 is calculated, which are as follows:

∂2AP3(n, p, t1)

∂n2
=
−2S

n3t1
,

∂2AP3(n, p, t1)

∂t1
2

= −2(S + n2s2)

t1
3

−
(
R +

D(p)

θ

)[h1(n− 1)

2
θ2eθt1 − h

(θeθt1
t1
− 2eθt1

t1
2

+
2(eθt1 − 1)

θt1
3

)]
,

∂2AP3(n, p, t1)

∂p2
=

(
h1(n− 1) +

2h

θt1

)
(eθt1 − 1)

θ
z1 − 2z1

(
h

θ
+ 3p

)
,

∂2AP3(n, p, t1)

∂n∂t1
=

2ns2

t1
2
−
(
R +

D(p)

θ

)
h1
2
θeθt1 ,

∂2AP3(n, p, t1)

∂p∂t1
=

(y1 + 2z1p)h1(n− 1)θeθt1

2
,
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and

∂2AP3(n, p, t1)

∂n∂p
=

h1
2

(
(y1 − 2z1p)

(eθt1 − 1)

θ

)
.

The sufficient conditions for the optimum solution of AP3(n, t1) are

∂2AP3(n,p,t1)
∂n2 < 0, ∂2AP3

∂n2
∂2AP3

∂p2
− (∂

2AP3

∂n∂p
)2 > 0, and the value of third principal minor is

H =
−2S

nt1
3

[(
1 +

h1(n− 1)nt1
3

4S
(Rθ +D(p))θeθt1 +

sn

S
+
nt1

3h

2S

(
R +

D(p)

θ

)
l1l3

+
nt1

3h

2S
h1

2
(y1

2
+ z1p

)2
− l52 −

nt1
3h1
S

(y1
2

+ z1p
)
l4l5 +

nt1
3

2S
l3l4

2
)]

< 0

Now ∂2AP3(n,p,t1)
∂n2 = −2S

n3t1
< 0.

We have to show that ∂2AP3

∂n2
∂2AP3

∂p2
− (∂

2AP3

∂n∂p
)2 > 0.

To prove the condition of second principal minor, if ∂2AP3

∂n2 > ∂2AP3

∂n∂p
and

∂2AP3

∂p2
> ∂2AP3

∂n∂p
, then the conditions hold.

Now

∂2AP3(n, p, t1)

∂n∂p
=

h1
2

(
(y1 − 2z1p)

(eθt1 − 1)

θ

)

which can be written as

∂2AP3(n, p, t1)

∂n∂p
=

∂2AP3(n, p, t1)

∂n2
− ξ5.

where

ξ5 = − 2S

n3t1
− h1

2

(
(y1 − 2z1p)

(eθt1 − 1)

θ

)
∂2AP3

∂n2 > ∂2AP3

∂n∂p
will hold if ξ5 > 0.

Now ξ5 > 0 exists, when

4Sθ > n3t1(e
θt1 − 1)h1(2z1p− y)
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Similarly,

∂2AP3(n, p, t1)

∂n∂p
=

∂2AP3(n, p, t1)

∂p2
− ξ6

where

ξ6 =
(eθt1 − 1)

θ

[(
h1(n− 1) +

2h

θt1

)
z1 −

h1
2

(y1 − 2z1p)

]
− 2z1

(
h

θ
+ 3p

)

∂2AP3

∂p2
> ∂2AP3

∂n∂p
will exist if ξ6 > 0.

i.e., if

2z1θ
(
h
θ

+ 3p
)

(eθt1 − 1)
>

[
h1

(
z1(n− 1 + p)− y1

2

)
+

2z1θ

θt1

]

Similar as above, value of third principal minor i.e., H < 0 will be satisfied if

[
1 +

sn

S
+
nt1

3

2S

(
(n− 1)θ2eθt1

2
+ h

)(
R +

D(p)

θ

)]
l1l3 +

nt1
3

2S

(
l3l4

2

+hh1
2
(y1

2
+ z1p

2
)2 )

< l5
2 +

nt1
3h1
S

(y1
2

+ z1p
)
l4l5

Therefore, AP3(n
∗, p∗, t1

∗) will have the global maximum (where n∗, p∗, and t1
∗ are optimal values

of n, p, and t1) if conditions hold.

Case IV

This section describes that demand of products is exponentially time-dependent. For example,

electronic goods, fashionable clothes are those products whose demand rate may fluctuate with

time. For new products, initially the demand is very high and then it decreases. That situation

of demand can be represented by exponential demand pattern. Therefore, it can be observed that

demand of products varies exponentially with time.

In this case, the demand function f(t) = D(t) = x2e
y2t
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The governing differential equation of this inventory model is

dI(t)

dt
+ θI(t) = −f(t), 0 ≤ t ≤ t1, I(t1) = R

= −x2ey2t

Using the boundary condition, the inventory level I(t) as

I(t) = Reθ(t1−t) +
x2

(y2 + θ)
(e(y2+θ)t1−θt − ey2t)

During [0,t1], the total costs are as follows:

(i) Fixed cost of stocks per transfer to display area from warehouse = s.

(ii) Holding cost is

= h

∫ t1

0

I(t)dt =
hR

θ
(eθt1 − 1) +

hx2
(y2 + θ)

e(y2+θ)t1
(1− e−θt1)

θ
− hx2

(y2 + θ)

(ey2t1 − 1)

y2

(iii) The revenue per cycle is

= (p− c)
∫ t1

0

D(t)dt = (p− c)
∫ t1

0

x2e
y2tdt = (p− c)x2

[
ey2t1

y2
− 1

y2

]
Applying I(0)=q+R,

q +R =
x2

(y2 + θ)
(e(y2+θ)t1 − 1) +Reθt1

i.e., q =
x2

(y2 + θ)
(e(y2+θ)t1 − 1) +Reθt1 −R

(iv) Stock holding cost in the warehouse is

= h1[
n(n− 1)

2
q]t1 = h1t1

n(n− 1)

2

[ x2
(y2 + θ)

(e(y2+θ)t1 − 1) +Reθt1 −R
]

The average profit function per unit time is

AP4(n, t1)=
1
T

[revenue-(total cost in warehouse)-(total cost in display area)] (where T=nt1)

=
(p− c)x2
y2t1

(ey2t1 − 1)−
[ S
nt1

+ h1
(n− 1)

2

( x2
(y2 + θ)

(e(y2+θ)t1 − 1) +Reθt1 −R
)]

− s

t1
− h

t1

[ x2
(y2 + θ)

e(y2+θ)t1
(1− e−θt1)

θ
− x2

(y2 + θ)

(ey2t1 − 1)

y2
+
R(eθt1 − 1)

θ

]
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AP4(n, t1) is to maximize with respect to the decision variables n and t1.

To obtain the global maximum solution, Lemma 4 is constructed.

Lemma 4

AP4(n
∗, t1

∗) will have the global maximum solution (where n∗ and t1
∗ are optimal values of n and

t1) if following conditions are satisfied

(i)eθt1(x2e
y2t1 +Rθ) >

2S(2− Sn)

h1t1n3

and

(ii)
(c− p)x2b1

y2
>

2S

nt1
3

+
h1(n− 1)b2

2
+ hb3

[See Appendix E for the values of b1, b2, and b3.]

Proof

From the necessary conditions of optimal solution, one has ∂AP4(n,t1)
∂n

= 0.

i.e.,

∂AP4(n, t1)

∂n
=

S

n2t1
− h1

2

(
x2

(y2 + θ)
e(y2+θ)t1 +Reθt1 −R

)
= 0

which implies

n =

√√√√ 2S

h1t1

(
x2

(y2+θ)
e(y2+θ)t1 +Reθt1 −R

)
For the other decision variable t1,

∂AP4(n,t1)
∂t1

= 0.

i.e.,
(p− c)x2

y2

(
ey2t1y2
t1

− (ey2t1 − 1)

t21

)
+

S
t12√
2S

h1t1
(

x2
(y2+θ)

e(y2+θ)t1+Reθt1−R
) +

s

t1
2
− h1(x2e(y2+θ)t1

+ Rθeθt1)
1

2

√√√√ 2S

h1t1

(
x2

(y2+θ)
e(y2+θ)t1 +Reθt1 −R

) − 1

− h[ x2
(y2 + θ)

(
− e(y2+θ)t1 (1− eθt1)

θt1
2

+
e(y2+2θ)t1

t1
+

(1− eθt1)
θ

e(y2+θ)t1

t1
(y2 + θ)

)
− ey2t1 +Reθt1

]
= 0
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Now t1
∗ can be obtained if ξ4(t1

∗) = 0 where ∂AP4(n,t1)
∂t1

= ξ4(t1).

From the sufficient conditions, the second order partial derivatives of AP4(n, t1) with respect to n

and t1 are as follows:

∂2AP4(n, t1)

∂n2
=
−2S

n3t1
,

∂2AP4(n, t1)

∂t1
2

=
(p− c)x2

y2

[
2(ey2t1 − 1)

t1
3

− 2ey2t1y2
t1

2
+
ey2t1y2

2

t1

]
− 2S

nt1
3
− h1

(n− 1)

2
[x2(y2

+ θ)e(y2+θ)t1 +Reθt1θ2]− h
[
e(y2+θ)t1(−θe−θt1 − y2ey2t1)

x2
y2 + θ

+ x2(y2

+ θ)
((1− e−θt1)

θ
+

(1− ey2t1)
y2

)
+ 2(e−θt1 − ey2t1)(y2 + θ)

x2
(y2 + θ)

+ Rθeθt1
]
,

and

∂2AP4(n, t1)

∂n∂t1
= − S

n2t1
2
− h1

2
[x2e

(y2+θ)t1 +Reθt1θ].

The sufficient conditions for the optimum solution of AP4(n, t1) are ∂2AP4(n,t1)
∂n2 < 0 and ∂2AP4

∂n2
∂2AP4

∂t12
−

(∂
2AP4

∂n∂t1
)2 > 0.

∂2AP4(n, t1)

∂n2
=
−2S

n3t1
< 0

One has to prove ∂2AP4

∂n2
∂2AP4

∂t12
− (∂

2AP4

∂n∂t1
)2 > 0.

To justify above condition, if ∂2AP4

∂n2 > ∂2AP4

∂n∂t1
and ∂2AP4

∂t12
> ∂2AP4

∂n∂t1
, then optimality conditions for

second principal minor are satisfied.

∂2AP4(n, t1)

∂n∂t1
= − S

n2t1
2
− h1

2
[x2e

(y2+θ)t1 +Reθt1θ]

which can be written as

∂2AP4(n, t1)

∂n∂t1
=

∂2AP4(n, t1)

∂n2
− ξ7.
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where

ξ7 =
2S

n3t1
− S

n2t1
2
− h1

2
[x2e

(y2+θ)t1 +Reθt1θ]

∂2AP4

∂n2 > ∂2AP4

∂n∂t1
will hold if ξ7 > 0.

Now ξ7 > 0 will exist if

eθt1(x2e
y2t1 +Rθ) >

2S(2− Sn)

h1t1n3
.

Similarly,

∂2AP4(n, t1)

∂n∂t1
=

∂2AP4(n, t1)

∂t1
2

− ξ8

where

ξ8 =
(c− p)x2

y2

[
2(ey2t1 − 1)

t1
3

− 2ey2t1y2
t1

2
+
ey2t1y2

2

t1

]
+

2S

nt1
3

+ h1
(n− 1)

2
[Reθt1θ2 + x2(y2

+ θ)e(y2+θ)t1 ] + h
[
e(y2+θ)t1(−θe−θt1 − y2ey2t1)

x2
y2 + θ

+
((1− e−θt1)

θ
+

(1− ey2t1)
y2

)
x2(y2

+ θ) + 2(e−θt1 − ey2t1)(y2 + θ)
x2

(y2 + θ)
+Rθeθt1

]
− S

n2t1
2
− h1

2
[x2e

(y2+θ)t1 +Reθt1θ]

∂2AP4

∂t12
> ∂2AP4

∂n∂t1
will exist if ξ8 > 0, i.e., if

(c− p)x2b1
y2

>
2S

nt1
3

+
h1(n− 1)b2

2
+ hb3

Therefore, AP4(n
∗, t1

∗) will have the global maximum (where n∗ and t1
∗ are optimal values of n

and t1) solution if the conditions hold.

2.3 Numerical examples

By using numerical data from Goyal and Chang (2009) model, this chapter formulates the optimal

value of average profit and optimal order quantity.
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Example 1(a) The values for the parameters are taken as follows:

h = $0.6/unit/unit time, h1 = $0.3/unit/unit time, c = $1.0/unit, x = 100, y = 10, z = 0.1,

x1 = 800, y1 = 50, z1 = 0.1, R = 1 unit, a = 0.1, b = 0.2, s = $10/transfer, S = $100/order.

Optimal solution is AP1 = $3432.74, n∗ = 10, t1
∗ = 0.33 year, p∗ = $9.3/unit, and optimal order

quantity Q∗ = 114.325 units. Figure 2.2, Figure 2.3, and Figure 2.4 shows the optimality of average

Profit (AP1).

Figure 2.2: Average Profit (AP1) versus number of transfer of stocks (n) and selling-price (p)

Figure 2.3: Average Profit (AP1) versus number of transfer of stocks (n) and time (t1)
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Figure 2.4: Average Profit (AP1) versus selling-price (p) and time (t1)

Example 2(a) The values for the parameters are taken as follows:

h = $0.6/unit/unit time, h1 = $0.3/unit/unit time, c = $1.0/unit/unit time, p = $3.0/unit,

x = 3000, y = 40, z = 0.1, R = 1 unit, a = 0.1, b = 0.2, s = $10/transfer, S = $100/order.

Then the optimal solution is AP2 = $2983.81, n∗ = 3, t1
∗ = 0.206 year, and optimal order quantity

Q∗ = 1069.69 units. Figure 2.5 shows the optimality of average Profit (AP2).

Figure 2.5: Average Profit (AP2) versus number of transfer of stocks (n) and time (t1)
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Example 3(a) The values for the parameters are taken as follows:

h = $0.6/unit/unit time, h1 = $0.3/unit/unit time, c = $1.0/unit, x1 = 700, y1 = 40, z1 = 0.1,

R = 1 unit, a = 0.1, b = 0.2, s = $10/transfer, S = $100/order. Then the optimal solution

is AP3 = $2473.03, n∗ = 3, and p∗ = $9.1/unit, t1
∗ = 0.42 year, and optimal order quantity

Q∗ = 426.406 units. Figure 2.6, Figure 2.7, and Figure 2.8 shows the optimality of average Profit

(AP3).

Figure 2.6: Average Profit (AP3) versus selling-price (p) and number of transfer of stocks (n)

Figure 2.7: Average Profit (AP3) versus time (t1) and selling-price (p)
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Figure 2.8: Average Profit (AP3) versus number of transfer of stocks (n) and time (t1)

Example 4(a) The values for the parameters are taken as follows:

h = $0.6/unit/unit time, h1 = $0.3/unit/unit time, p = $3/unit, c = $1.0/unit, x2 = 2000,

y2 = 0.1, R = 1 unit, a = 0.1, b = 0.2, s = $10/transfer, S = $100/order. Then the optimal

solution is AP4 = $2634.91, n∗ = 2, and t1
∗ = 0.3 year, and optimal order quantity Q∗ = 934.702

units. Figure 2.9 shows the optimality of average Profit (AP4).

Figure 2.9: Average Profit (AP4) versus number of transfer of stocks (n) and time (t1)
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Case Study

This model determined retailer’s optimal ordering quantity through multi-delivery policy by assum-

ing demand of products is time, price, and time-price dependent. In addition, it is also considered

that deterioration rate follows uniform distribution. This model highlights the concept of uniformly

distributed deterioration. This fact can be easily observed by considering a real example. Frozen

fish is one of the examples of this concept. Generally, small fishes are preserved in ice. In that

case, deterioration rate of fishes is constant throughout the time. For this reason, deterioration of

products is measured as uniform in this model.

Example 1(b) The values for the parameters are taken as follows:

h = $0.8/unit/unit time, h1 = $0.1/unit/unit time, c = $3.0/unit, x = 200, y = 30, z = 0.2,

x1 = 1000, y1 = 80, z1 = 0.3, R = 2 unit, a = 0.2, b = 0.3, s = $20/transfer, S = $90/order. Then

the optimal solution is AP1 = $2611.79, n∗ = 13, t1
∗ = 0.4 year, p∗ = $9/unit, and optimal order

quantity Q∗ = 347 units. Figure 2.10, Figure 2.11, and Figure 2.12 shows the optimality of average

Profit (AP1).

Figure 2.10: Average Profit (AP1) versus selling-price (p) and number of transfer of stocks (n)
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Figure 2.11: Average Profit (AP1) versus time (t1) and number of transfer of stocks (n)

Figure 2.12: Average Profit (AP1) versus selling-price (p) and time (t1)
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Example 2(b) The values for the parameters are taken as follows:

h = $0.8/unit/unit time, h1 = $0.1/unit/unit time, p = $5/unit, c = $3.0/unit, x = 1000, y = 50,

z = 0.2, R = 2 unit, a = 0.2, b = 0.3, s = $20/transfer, S = $90/order. Then the optimal solution

is AP2 = $1703.83, n∗ = 5, t1
∗ = 0.25 year, and optimal order quantity Q∗ = 1298 units. Figure

2.13 shows the optimality of average Profit (AP2).

Figure 2.13: Average Profit (AP2) versus number of transfer of stocks (n) and time (t1)

Example 3(b) The values for the parameters are taken as follows:

h = $0.8/unit/unit time, h1 = $0.1/unit/unit time, c = $3.0/unit, x1 = 420, y1 = 50, z1 = 0.2,

R = 2 unit, a = 0.2, b = 0.3, s = $20/transfer, S = $90/order. Then the optimal solution is

AP3 = $234.01, n∗ = 6, p∗ = $6/unit, t1
∗ = 0.62 year, and optimal order quantity Q∗ = 455 units.

Figure 2.14, Figure 2.15, and Figure 2.16 shows the optimality of average Profit (AP3).
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Figure 2.14: Average Profit (AP3) versus selling-price (p) and number of transfer of stocks (n)

Figure 2.15: Average Profit (AP3) versus selling-price (p) and time (t1)
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Figure 2.16: Average Profit (AP3) versus number of transfer of stocks (n) and time (t1)

Example 4(b) The values for the parameters are taken as follows:

h = $0.8/unit/unit time, h1 = $0.1/unit/unit time, p = $5/unit, c = $3.0/unit, x2 = 500, y2 = 0.2,

R = 2 unit, a = 0.2, b = 0.3, s = $20/transfer, S = $90/order. Then the optimal solution is

AP4 = $813.24, n∗ = 5, and t1
∗ = 0.4 year, and optimal order quantity Q∗ = 1096 units. Figure

2.17 shows the optimality of average Profit (AP4).

Figure 2.17: Average Profit (AP4) versus number of transfer of stocks (n) and time (t1)
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Sensitivity Analysis

This section provides the sensitivity analysis of each key parameter. The sensitivity analysis of key

parameters for several demand functions are given in the following tables namely Table 2.2, Table

2.3, Table 2.4, and Table 2.5.

Table 2.2: Sensitivity analysis for Case I

Parameters Changes(in %) AP1

−50% 0.83

−25% 0.35

h +25% −

+50% −

−50% 6.28

−25% 3.11

c +25% −3.07

+50% −6.10

Parameters Changes(in %) AP1

−50% 0.36

−25% 0.16

h1 +25% −0.14

+50% −0.27

−50% 0.51

−25% 0.23

s +25% −0.2

+50% −0.39

‘−’ refers to infeasible solution.

• As unit carrying cost per stock in display area h increases, average profit AP1 decreases. But,

for +25% and +50% increase of this parameter, the model does not allow feasible results.

This means that, holding cost can be decreased, but one cannot increase it anymore.

• It can be observed if the parameter h1 i.e., unit carrying cost per stock in warehouse, increases

then the average profit AP1 gradually decreases. The negative percentage change is greater

than positive percentage change for h1. This is the least sensitive parameter among others.

• If purchasing cost c increases, then the average profit AP1 decreases. In this case, negative
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percentage change is greater than the positive percentage change for that parameter. It is the

most sensitive parameter among others.

• An increasing value in ordering cost s decreases the average profit AP1. For that parameter

s, positive percentage change is less than the negative percentage change. This is also less

sensitive parameter among others.

Table 2.3: Sensitivity analysis for Case II

Parameters Changes(in %) AP2

−50% −

−25% −

h +25% −0.8

+50% −1.47

−50% 2.36

−25% 1.02

h1 +25% −0.79

+50% −1.35

Parameters Changes(in %) AP2

−50% 28.56

−25% 14.28

c +25% −14.28

+50% −28.56

−50% 0.95

−25% 0.43

s +25% −0.38

+50% −0.73

‘−’ refers to infeasible solution.

• While the parameter unit carrying cost per stock in display area (i.e., h) decreases for −25%

and −50%, this model does not give any feasible solution. But for +25% and +50%, this

model allows feasible results and in that case average profit AP2 decreases when unit carrying

cost per stock in display area h increases.

• As h1 i.e., unit carrying cost per stock in warehouse, increases, then the average profit AP2

decreases gradually. The positive percentage change is less than negative percentage change
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for h1.

• For the unit purchasing cost c, negative and positive percentage changes are exactly same.

An increasing value in purchasing cost c decreases the average profit AP2. This is the most

sensitive parameter comparing with other parameters.

• When ordering cost s increases, the average profit AP2 decreases. The negative percentage

change is bigger in comparing to positive percentage change for s. This is least sensitive

among other parameters.

Table 2.4: Sensitivity analysis for Case III

Parameters Changes(in %) AP3

−50% −2.96

−25% −3.4

h +25% −4.26

+50% −4.70

−50% −3.35

−25% −3.6

s +25% −4.07

+50% −4.31

Parameters Changes(in %) AP3

−50% 0.06

−25% −1.89

h1 +25% −5.78

+50% −7.72

−50% 2.81

−25% 0.51

c +25% −7.15

+50% −10.47

• If unit carrying cost per stock in display area (i.e., h) increases, the average profit AP3

decreases. It is found that positive and negative percentage changes are almost double for h.

• For h1, the positive percentage change is greater than the negative percentage change. The

result indicates that average profit AP3 decreases if h1 increases.
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• While purchasing cost c increases from −50% to +50%, average profit AP3 decreases. The

negative percentage change is smaller than positive percentage change for that parameter.

This is the most sensitive parameter comparing to others.

• The increasing value of ordering cost s decreases the average profit AP3. The negative per-

centage change is not similar with positive percentage change of s.

Table 2.5: Sensitivity analysis for Case IV

Parameters Changes(in %) AP4

−50% −13.60

−25% −14.93

h +25% −17.60

+50% −18.92

−50% −4.29

−25% −10.28

h1 +25% −22.24

+50% −28.23

Parameters Changes(in %) AP4

−50% 12.62

−25% −1.82

c +25% −30.7

+50% −45.14

−50% −15.63

−25% −15.94

s +25% −16.58

+50% −16.89

• The negative percentage change and positive percentage change for h is not similar. As unit

carrying cost per stock in display area h increases, the average profit AP4 decreases.

• It can be found that if the parameter h1 i.e., unit carrying cost per stock in warehouse,

increases, then the average profit AP4 decreases. The negative and positive percentage changes

are similar for h1.
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• While purchasing cost c increases, then the average profit AP4 decreases. From Table 5, it can

be concluded that the negative percentage change is higher than positive percentage change.

• An increasing value in ordering cost s decreases the average profit AP4. In that case, negative

and positive percentage changes are close to each other.

2.4 Concluding remarks and future works

This chapter presented four different types of demand functions which are time, selling-price, time-

price, and exponentially time-dependent. The main objective of this chapter is to determine re-

tailer’s optimal ordering quantity and to maximize average profit function. Additionally, the number

of transfers from warehouse to display area is also obtained. In future, this research can be expanded

in different ways by considering shortages, discounts, and inflation rates.

2.5 Appendices

Appendix A

M =

(
y

2
+

2zt1
3

)
+
h1(n− 1)

2
(y1 + 2z1p)e

θt1 +
h(y1 + 2z1p)

θ

(
eθt1

t1
+

(1− eθt1)
θt1

2

)
N = 4z1p− 2

[
cz1 − y1 −

z1
θ

(h1(n− 1)

2
(1− eθt1) + h

((1− eθt1)
θt1

+ 1
))]

U = (y1p+ z1p
2 − x− x1 − yt1 − zt12 −Rθ)eθt1

Appendix B

f =
[(1− eθt1)

θ
(y1p+ z1p

2 − x− x1) + y

(
t1e

θt1

θ
− (eθt1 − 1)

θ2

)
+ z
(t12eθt1

θ
− 2t1e

θt1

θ2

+
2(eθt1 − 1)

θ3

)
+Reθt1 −R

]
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Appendix C

α =
h1
2

(θ(n− 1)− 1)

(
y

θ
− 2

θ2
− x
)

β =

(
y − 2z

θ

)(
h1
2θ

(θt1 + 1− (n− 1)θ(t1θ + 2)− h)

)
γ =

z

θ

[
h1(t1

2θ + 2t1 −
(n− 1)

2
(4t1θ + θ2t1

2 + 2))− h(t1θ + 2)

]
δ =

h

2

[
2(1− eθt1)

t1
3

+
2θeθt1

t1
2
− θ2eθt1

t1

] [
R−

(
y

θ
− 2z

θ2
− x
)]

a1 =
h1(n− 1)

4
zθ2

a2 =
h1(n− 1)

2

(
(y + 2z)

θ2

2
+ 2zθ

)
a3 =

h1(n− 1)

2

[
(y + 2z)

3θ

2
+ 3z

]
−
[h1(n− 1)

2

(
Rθ3

2
+
(y
θ
− 2z

θ2
− x
)
e−θt

θ2

2

)
+ h
(
y

− 2z

θ

)θ
2

]
a4 =

[2(p− c)z
3

− h1(n− 1)

2

(
Rθ2 +

(
y

θ
− 2z

θ2
− x
)
e−θtθ − 2θ

(y
θ

+
2z

θ

)
− z

θ

)
− hRθ2

2

+ h

(
y

θ
− 2z

θ2
− x
)
θ

2
− h

(
y − 2z

θ

)]
,

a5 =
[
(p− c)y

2
− h1(n− 1)

2

[
Rθ +

(
y

θ
− 2z

θ2
− x
)
e−θt −

(
y

θ
+

2z

θ

)]
− hRθ

2
− h

2

(y
θ

− 2z

θ2

)]
,

a6 =
S

n
+ s.

Appendix D

D(p) = (x1 − y1p− z1p2).

l1 =
2(eθt1 − 1)

θt1
3

− 2eθt1

θ2
+
θeθt1

t1
.

l2 =

(
eθt1

t1
− eθt1 − 1

θt1
2

)
.

l3 =

(
2cz1 + h1(n− 1)z1 − 6z1p+

2z1h

θ
l2

)
.
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l4 =

(
− S

n2t1
2
− h1

2
(Rθ +D(p))eθt1

)
.

l5 = (y1 + 2z1p)

(
h1(1− n)

2
eθt1 +

h

θ

)
l2.

Appendix E

b1 =

[
2(ey2t1 − 1)

t1
3

− 2ey2t1y2
t1

2
+
ey2t1y2

2

t1

]
,

b2 = [x2(y2 + θ)e(y2+θ)t1 +Reθt1θ2],

b3 =
[
e(y2+θ)t1(−θe−θt1 − y2ey2t1)

x2
y2 + θ

+ x2(y2 + θ)

(
(1− e−θt1)

θ
+

(1− ey2t1)
y2

)
+ 2(e−θt1 − ey2t1)(y2 + θ)

x2
(y2 + θ)

+Rθeθt1
]
.


