
Chapter 6

Computation of inverse 1-center

location problem on the weighted

trapezoid graphs∗

6.1 Introduction

Let the graph G = (V,E) is simple, connected and undirected weighted TraGs. Figure 6.1

represents a TraG and it’s TraD is shown in Figure 6.2. The class of TraG includes two well

known classes of Int: the PerG and the InvG [50]. The PerG are obtained in the case where

ai = bi and ci = di for all i and the InvG are obtained in the case where ai = ci and bi = di

for all i. TraG can be completed in O(n2) time [62]. The TraG were first studied in [24, 26].

These graphs are superclass of InvG, PerG and subclass of CcoG [60].

6.1.1 Organization of the chapter

Section 6.2 describes the construction of the tree TTRP . In Section 6.3, we discuss the Inv1C

and some notations. In Section 6.4, we establish an algorithm to get Inv1C of the modified

node weighted tree corresponding to the TraG G. The T-complexity is also calculated in

this section. In Section 6.5, we give the summary.

∗A part of the work presented in this chapter is published in Missouri Journal of Mathematical Science,

31 (2019) 1-22.

107

108 Chapter 6. Inverse 1-center location problem on trapezoid graphs

u
v u
u
u u
u

v
u

c
c
c

A
A
A
A
A
AA

��
��

��
���

````

1

2

3

4

5

6

9

7

8

10

Figure 6.1: A TraG G.

a1 b1 b2a2 a3 b3b4a4 b5a5a6 b6a7 b7a8 b8a9 b9a10 b10

c1 d1c2 d2c3 d3 c4 d4c5 d5c6 d6 c7 d7c8 d8c9 d9c10 d10

Figure 6.2: A TraD T of the TraG G of Figure 6.1.

6.2 Construction of minimum height tree for trapezoidal graph

Let i be pre-specified node which to be Inv1C. In this section, our aim is to construct a

minimum height tree, as root i, with two branches of level difference either zero or one.

Let the node i be the root of the tree. Then we find all adjacent nodes to i correlative to

the trapezoid and set them as child (leaves) of i. Next consider the nodes k and j, where k =

max{bk or dk : (k, i) ∈ E}, j = max{bj or dj : (j, i) ∈ E, k 6= j and bj < bk or dj < dk}

and set them as a nodes on the main path and marked them. Next find all adjacent trapezoids

to the nodes k and j and set them as respective child (leaves). This process is continue until

all trapezoids are marked. In this way we construct a rooted tree with two branches with

level difference either zero or one.

The proposed combinatorial algorithm to construct the tree TTRP is as follows:

Algorithm TRP-TREE

Input: Weighted TraG G with four corner points [ai, bi, ci, di], i = 1, 2, . . . , n and T =

1, 2, . . . , n be the set of n trapezoids.

Output: The rooted tree TTRP with two branches of the TraG G.

Step 1. Set root = i and compute N(i) = the open neighbourhood of i = {v : (v, i) ∈ E}.



6.2. Construction of minimum height tree for trapezoidal graph 109

Step 2. If |N(i)| = 1, then end.

If |N(i)| > 1 and i is the starting trapezoid, i.e. i = 1, then go to Step 3.

If |N(i)| > 1 and i is the end trapezoid, i.e. i = n, then go to Step 4.

If |N(i)| > 1 and i is an trapezoid between 1 and n, i.e. 1 < i < n, then

go to Step 5.

Step 3. Set N(i) as the child of the root i and marked them.

Step 3.1. Set k = max{bk or dk : (k, i) ∈ E},

j = max{bj or dj : (j, i) ∈ E, k 6= j and bj < bk or dj < dk}.

Step 3.2. Find unmarked adjacent of j and k and if N(j)
⋂
N(k) = φ,

then m1 = max{bm1 or dm1 : (m1, k) ∈ E,m1 ∈ N(k)} and set all

unmarked N(k) as the child of k and marked them and

m2 = max{bm2 or dm2 : (m2, j) ∈ E,m2 ∈ N(j)} and set all unmarked

N(j) as the child of j and marked them.

else m′1 = max{bm′1 or dm′1 ∈ N(k) ∩N(j)} set as child of j and

{N(k) ∪N(j)− {m′1}} as child of k and marked and find

m′′1 = max{N(k) ∪N(j)− {m′1}}.

Step 3.3. This process is continued until all trapezoids are marked.

Step 3.4. Compute the trapezoid tree TTRP .

Step 4. Set N(i) as the child of the root i and marked them.

Step 4.1. Set j′ = min{aj′ or cj′ : (j′, i) ∈ E},

k′ = min{ak′ or ck′ : (k′, i) ∈ E, k′ 6= j′ and a′j < a′k or c′j < c′k}.

Step 4.2. Find unmarked adjacent of j′ and k′ and if

N(j′)
⋂
N(k′) = φ, then r1 = min{ar1 or cr1 : (r1, j

′) ∈ E, r1 ∈ N(j′)}

and set all unmarked N(j′) as the child of j′ and marked them and

r2 = min{ar2 or cr2 : (r2, k
′) ∈ E, r2 ∈ N(k′)} and set all unmarked

N(k′) as the child of k′ and marked them.

else r′1 = min{ar′1 or cr′1 : r′1 ∈ N(′k) ∩N(j′)} set as child of

j′ and {N(k′) ∪N(j′)− {r′1}} as child of k′ and marked and find

r′′1 = min{N(k′) ∪N(j′)− {r′1}}.

Step 4.3. This process is continued until all trapezoids are marked.

Step 4.4. Compute the trapezoid tree TTRP .

Step 5. Set N(i) as the child of the root i and marked them.

Step 5.1. Set p = max{bp or dp : (p, i) ∈ E},

q = min{aq or cq : (q, i) ∈ E} and p 6= q.



110 Chapter 6. Inverse 1-center location problem on trapezoid graphs

Step 5.2. Set p′ = max{bp′ or dp′ : (p′, p) ∈ E, p′ ∈ N(p)} and set all

unmarked N(p) as the child of p and marked.

Step 5.3. Set q′ = min{aq′ or cq′ : (q′, q) ∈ E, q′ ∈ N(q)} and set all

unmarked N(q) as the child of q and marked.

Step 5.4. This process is continued until all trapezoids are marked.

Step 5.5. Compute the tree TTRP .

Step 6. Put weight wj(> 0) to the node j in TTRP corresponding to the trapezoid j of the

TraG G.

end TRP-TREE.

v
u v v

vv
v v
v v

1(5)

2(3)

5(4)

9(7)

10(8)

3(4)

4(6)

6(4)

7(5)

8(13)

Level

0

1

2

3

4

Figure 6.3: Tree TTRP of the TraG G.

Illustration of the Algorithm TRP-TREE : Let i = 1 be the pre-specified node which

is the root whose level is 0. Next the open neighbourhood of 1 is N(1) = {2, 3, 4}, where the

nodes of N(1) as the child of the root 1 and put them at level 1. Next, 4 has the maximum

bi among the trapezoids of N(1) corresponding to the nodes of the graph G and 2 has the

next maximum di among the trapezoids of N(1) corresponding to the nodes of the graph G.

Next the open neighbourhoods of 4 and 2 are N(4) = {5, 6} and N(2) = {5, 6} respectively,

where the nodes of N(4) and N(2) as the child of the roots 4 and 2 and put them at level

2. Next 6 has the maximum bi among the trapezoids of N(4) corresponding to the nodes of

the graph G and 5 has the next maximum bi among the trapezoids of N(2) corresponding

to the nodes of the graph G. Next the open neighbourhoods of 6 and 5 are N(6) = {7}

and N(5) = {9} respectively, where the nodes of N(6) and N(5) as the child of the roots 6

and 5 and put them at level 3. Next 7 has the maximum di among the trapezoids of N(6)

corresponding to the nodes of the graph G and 9 has the maximum di among the trapezoids

of N(5) corresponding to the nodes of the graph G. Next the open neighbourhoods of 7 and

9 are N(7) = {8, 10} and N(9) = {8, 10} respectively, where the nodes of N(7) and N(9) as



6.2. Construction of minimum height tree for trapezoidal graph 111

the child of the roots 7 and 9 and put them at level 4. Finally we construct the rooted tree

TTRP with root i = 1 (Figure 6.3).

Now we have the following important observation on TTRP .

Lemma 6.2.1 The tree TTRP formed by the Algorithm TRP-TREE is a spanning tree.

Proof. As per construction of the graph TTRP by maximum bi or di, i = 1, 2 . . . , n, TraD

we get n nodes and (n − 1) edges. Also there is no repetition of the nodes, as we search

only unmarked nodes, so this is a graph without any circuit. Therefore the tree TTRP is a

spanning tree.

Hence the result. �

Lemma 6.2.2 The tree TTRP formed by the Algorithm TRP-TREE is a BFS tree with

minimum height.

Proof. Actually steps of the algorithm indicates the steps of BFS technique in TraG. Thus

the tree formed by the Algorithm TRP-TREE is BFS tree. Again we traverse the TraG with

respect to maximum bi or di until all unmarked trapezoids are marked. As in each step we

move on trapezoid, so, its height to be minimum.

Also the T-complexity of the Algorithm TRP-TREE to compute the tree TTRP is given

below:

Theorem 6.2.1 The T-complexity of the Algorithm TRP-TREE is O(n), where n is the

number of nodes of the tree.

Proof. Step 1 and Step 2 each takes O(n) time, since the arcs are sorted and the root is

selected from n arcs. Step 3 can be computed in O(n) time, since number of arcs is n. Since

the end points of the arcs are sorted, so the maximum element (node) from a set of nodes

can be computed in O(n) time. Again intersection of two finite sets of n elements (number

of nodes) can be executed in O(n) time. Thus Step 4 and Step 5 can be computed in O(n)

time. Since weight of the each node in tree TTRP corresponds the weight of the trapezoids in

TraG is placed on the corresponding node, so Step 6 can be executed in O(n) time. Hence

overall T-complexity of our proposed Algorithm TRP-TREE is O(n) time, where n is the

number of nodes of the weighted TraG. �

Thus the tree TTRP of the TraG is formed. The tree TTRP of the TraG G (Figure 6.1) is

shown in Figure 6.3.



112 Chapter 6. Inverse 1-center location problem on trapezoid graphs

6.3 Inverse 1-center location problem for trapezoidal graph

In this section we discuss about Inv1C.

Now, before going to our proposed algorithm we introduce some notations for our algo-

rithmic purpose. Let i be the pre-specified node in G.

Ri : Longest path to the node i.

Li : Another longest path to the node i.

w(Ri) : Total weight of the nodes except the node i of the path Ri.

w(Li) : Total weight of the nodes except the node i of the path Li.

wlow(v) : Minimum weight of the node in G.

wupp(v) : Maximum weight of the node in G.

wmin : min{w(Li), w(Ri)}.

wmax : max{w(Li), w(Ri)}.

w1 : min{w(v), v ∈ G}.

w2 : max{w(v), v ∈ G}.

k1 : The number of nodes in such path between Li, Ri whose weight

is maximum, except the node i.

k2 : The number of nodes in such path between Li, Ri whose weight

is minimum, except the node i.

TTRP : Weighted tree corresponding to the TraG G.

T ′TRP : Modified tree of the tree TTRP corresponding to the TraG G.

w∗(Ri) : Total weight of the nodes except the node i of the path Ri

after modification.

w∗(Li) : Total weight of the nodes except the node i of the path Li

after modification.

To find the Inv1C, we discuss following cases:

1. If total weight of one side of the node i is same as the total weight of other side, i.e.

w(Li) = w(Ri), then i is the center as well as the Inv1C of the graph.

2. If w(Li) 6= w(Ri), then we have following six cases :

Case-2.1. : When wmin is same as the multiplication of the number of nodes except the

node i in the path whose weight is maximum and minimum weight of the node in the graph,

i.e. wmin = k1w1.



6.3. Inverse 1-center location problem for trapezoidal graph 113

Case-2.2. : When wmin is bigger than the product of the number of nodes except the node

i in the path whose weight is maximum and minimum weight of the node in the graph, i.e.

wmin > k1w1.

Case-2.3. : When wmin is less than the product of the number of nodes except the node

i in the path whose weight is maximum and minimum weight of the node in the graph, i.e.

wmin < k1w1.

Case-2.4. : When wmax is same as the multiplication of the number of nodes except the

node i in the path whose weight is minimum and maximum weight of the node in the graph,

i.e. wmax = k2w2.

Case-2.5. : When wmax is bigger than the product of the number of nodes except the

node i in the path whose weight is minimum and maximum weight of the node in the graph,

i.e. wmax > k2w2.

Case-2.6. : When wmax is less than the product of the number of nodes except the node

i in the path whose weight is minimum and maximum weight of the node in the graph, i.e.

wmax < k2w2.

Under above conditions we modify the tree TTRP with the help of following non-linear

optimization model:

Min
∑

v1∈v1(TTRP )

{c+1 (w(v1))x1(w(v1)) + c−1 (w(v1))y1(w(v1))}

subject to

maxv1∈v1(TTRP ) dw(v1, i) ≤ maxv1∈v1(TTRP ) dw(v1, q), for all q ∈ TTRP (or q ∈

v1(TTRP )),

w(v1) = w(v1) + x1{w(v1)} − y1{w(v1)} for all v1 ∈ v1(TTRP ),

x1{w(v1)} ≤ w+{w(v1)}, for all v1 ∈ v1(TTRP ),

y1{w(v1)} ≤ w−{w(v1)}, for all v1 ∈ v1(TTRP ),

x1{w(v1)}, y1{w(v1)} ≥ 0, for all v1 ∈ v1(TTRP ),



114 Chapter 6. Inverse 1-center location problem on trapezoid graphs

where w(v1) be the modified node weight, w+{w(v1)} = wupp(v1)−w(v1) and w−{w(v1)} =

w(v1) − wlow(v1) are the maximum feasible amounts by which w(v1) can be increased and

reduced respectively, i.e. wlow(v1) ≤ w(v1) ≤ wupp(v1), x1{w(v1)} and y1{w(v1)} are the

maximum amounts by which the node weight w(v1) is increased and reduced respectively,

c+1 (w(v1)) is the non negative cost if w(v1) is increased by one unit and c−1 (w(v1)) is the

non negative cost if w(v1) is reduced by one unit. Every feasible solution (x1, y1) with

x1 = {x1(w(v1)) : v1 ∈ v1(TCIR)} and y1 = {y1(w(v1)) : e ∈ v1(TTRP )} is also called a

feasible modification of the Inv1C location problem.

Now, we prove the next results.

Lemma 6.3.1 If wmin = k1w1 in TTRP , then w∗(Li) = w∗(Ri) by reducing the weights of

all nodes except the node i, i.e. root i up to minimum weight maintaining the bounding

condition in the path whose weight is maximum and i is the Inv1C.

Proof. If k1 be the number of nodes in the maximum weighted path Li or Ri and w1 be

the minimum weight of the node among the nodes in TTRP as well as Li or Ri, then there

is a scope to reduce weight of each node up to w1. As k1 nodes is there in the path Li or

Ri, so we can reduces at least k1w1 weight and hence reduced weight of the path Li or Ri

becomes k1w1. Again we have wmin = k1w1. By this way we can balance the weights of both

paths. So we get the modified tree of the tree TTRP , say T ′TRP . Again, since the TraG is an

arbitrary, so our assumption is true for any TraG.

Finally in T ′TRP , we have w∗(Li) = w∗(Ri), which implies that i is the Inv1C of the given

weighted TraG. Hence the result. �

Lemma 6.3.2 If wmin > k1w1 in TTRP , then w∗(Li) = w∗(Ri) by reducing the weights of

some nodes except the root i maintaining the bounding condition in the path whose weight is

maximum and i is the Inv1C.

Proof. Since we can decrease the weight of each node except the root up to minimum weight

of the node in TTRP , so we can reduce the weight in the path whose weight is maximum in

such a way that its least weight of the path becomes k1w1. Again we have wmin > k1w1.

Therefore we can decrease the weights (wmax−wmin) from the nodes except the root i in the

path whose weight is maximum using the conditions of non-linear semi-infinite (or nonlinear)

optimization model technique (Section 6.3). By this way we can balance the weights of both

paths. So we get the modified tree of the tree TTRP , say T ′TRP . Again, since the TraG is an

arbitrary, so our assumption is true for any TraG.



6.3. Inverse 1-center location problem for trapezoidal graph 115

Finally in T ′TRP , we have w∗(Li) = w∗(Ri), which implies that i is the Inv1C of the given

weighted TraG. Hence the result. �

Lemma 6.3.3 If wmin < k1w1 in TTRP , then w∗(Li) = w∗(Ri) by reducing the weights of

all nodes up to minimum weight except the root i maintaining the bounding condition in the

path whose weight is maximum and enhance the weights of some nodes except the root i in

the path whose weight is minimum and i is the Inv1C.

Proof. Since we can decrease the weight of each node up to minimum weight of the node in

TTRP , so we can reduce the weights of the nodes except the root in the path whose weight

is maximum in such a way that its least weight of the path becomes k1w1. Again we have

wmin < k1w1. Therefore we can increase the weights (k1w1 −wmin) to the nodes except the

root in the path whose weight is minimum using the conditions of non-linear semi-infinite

(or nonlinear) optimization model technique (Section 6.3). By this way we can balance the

weights of both paths. So we get the modified tree of the tree TTRP , say T ′TRP . Again, since

the TraG is an arbitrary, so our assumption is true for any TraG.

Finally in T ′TRP , we have w∗(Li) = w∗(Ri), which implies that i is the Inv1C of the given

weighted TraG. Hence the result. �

Lemma 6.3.4 If wmax = k2w2 in TTRP , then w∗(Li) = w∗(Ri) by enhance the weights of

all nodes up to maximum weight except the root i maintaining the bounding condition in the

path whose weight is minimum and i is the Inv1C.

Proof. If k2 be the number of nodes in the minimum weighted path Li or Ri and w2 be

the maximum weight of the node among the nodes in TTRP as well as Li or Ri, then there

is a scope to increase the weight of each node up to w2. As k2 nodes is there in the path Li

or Ri, so we can enhance atmost k2w2 weight and hence enhanced weight of the path Li or

Ri becomes k2w2. Again we have wmax = k2w2. By this way we can balance the weights of

both paths. So we get the modified tree of the tree TTRP , say T ′TRP . Again, since the TraG

is an arbitrary, so our assumption is true for any TraG.

Finally in T ′TRP , we have w∗(Li) = w∗(Ri), which implies that i is the Inv1C of the given

weighted TraG. Hence the result. �

Lemma 6.3.5 If wmax > k2w2 in TTRP , then w∗(Li) = w∗(Ri) by enhance the weights of

all nodes up to maximum weight except the root i maintaining the bounding condition in path

whose weight is minimum and reducing the weights of some nodes except the root i in the

path whose weight is maximum and i is the Inv1C.



116 Chapter 6. Inverse 1-center location problem on trapezoid graphs

Proof. Since we can increase the weight of each node up to maximum weight of the node in

TTRP , so we can enhance the weights of all nodes except the root i in the path whose weight

is minimum in such a way that its greatest weight of the path becomes k2w2. Again we have

wmax > k2w2. Therefore we can reduces the weights (wmax−k2w2) to some nodes except the

root in the path whose weight is maximum using the conditions of non-linear semi-infinite

(or nonlinear) optimization model technique (Section 6.3). By this way we can balance the

weights of both paths. So we get the modified tree of the tree TTRP , say T ′TRP . Again, since

the TraG is an arbitrary, so our assumption is true for any TraG.

Finally in T ′TRP , we have w∗(Li) = w∗(Ri), which implies that i is the Inv1C of the given

weighted TraG. Hence the result. �

Lemma 6.3.6 If wmax < k2w2 in TTRP , then w∗(Li) = w∗(Ri) by enhance the weights of

some nodes except the root i maintaining the bounding condition in the path whose weight is

minimum and i is the Inv1C.

Proof. Since we can increase the weight of each node up to maximum weight of the node

in TTRP , so we can enhance the weights of the nodes except the root i in the path whose

weight is minimum in such a way that its greatest weight of the path becomes k2w2. Again

we have wmax < k2w2. Therefore we can increase the weights (wmax −wmin) to some nodes

except the root i in the path whose weight is minimum using the conditions of non-linear

semi-infinite (or nonlinear) optimization model technique (Section 6.3). By this way we can

balance the weights of both paths. So we get the modified tree of the tree TTRP , say T ′TRP .

Again, since the TraG is an arbitrary, so our assumption is true for any TraG.

Finally in T ′TRP , we have w∗(Li) = w∗(Ri), which implies that i is the Inv1C of the given

weighted TraG. Hence the result. �

6.4 Algorithm and its complexity

In this section we suggested a combinatorial algorithm for the Inv1C location problem on

the weighted tree TTRP . The main idea of our suggested algorithm is as follows:

Let TTRP be a weighted tree corresponding to the TraG G with n nodes and (n−1) edges.

Let V be the node set and E be the edge set. Let i be any non-pendant specified node in

the tree TTRP which is to be Inv1C. At first we calculate the path whose weight is maximum

from i to any pendant node of TTRP . Let L and R be the left and right paths from i in

which weights are maximum with respect to sides. Let w(Li), w(Ri) be the total weights

of the nodes except the root of the paths Li, Ri respectively with respect to the node i. If



6.4. Algorithm and its complexity 117

w(Li) = w(Ri), then i is the center as well as the Inv1C of the graph. If w(Li) 6= w(Ri), then

six cases may arise. In the first case, if wmin = k1w1 in TTRP , where w1 = min{w(v), v ∈ G},

wmin = min{w(Li), w(Ri)}, k1 be the number of nodes in such path between Li, Ri whose

weight is maximum, except the root i and wmin > 0, then w∗(Li) = w∗(Ri) by reducing

the weights of all nodes up to minimum weight except the node i, i.e.,root i maintaining

the bounding conditions (Section 6.3) in the path whose weight is maximum and i is the

Inv1C. In the second case, if wmin > k1w1 in TTRP , where w1 = min{w(v), v ∈ G}, wmin =

min{w(Li), w(Ri)}, k1 be the number of nodes in such path between Li, Ri whose weight is

maximum, except the root i and wmin > 0, then w∗(Li) = w∗(Ri) by reducing the weights

of some nodes except the root i maintaining the bounding conditions (Section 6.3) in the

path whose weight is maximum and i is the Inv1C. In third case, if wmin < k1w1 in TTRP ,

where w1 = min{w(v), v ∈ G}, wmin = min{w(Li), w(Ri)}, k1 be the number of nodes in

such path between Li, Ri whose weight is maximum, except the root i and wmin > 0, then

w∗(Li) = w∗(Ri) by reducing the weights of all nodes up to minimum weight except the root i

maintaining the bounding conditions (Section 6.3) in the path whose weight is maximum and

enhance the weights of some nodes except the root i in the path whose weight is minimum

and i is the Inv1C. In fourth case, if wmax = k2w2 in TTRP , where w2 = max{w(v), v ∈ G},

wmax = max{w(Li), w(Ri)}, k2 be the number of nodes in such path between Li, Ri whose

weight is minimum, except the root i and wmax > 0, then w∗(Li) = w∗(Ri) by enhance

the weights of all nodes up to maximum weight except the root i maintaining the bounding

conditions (Section 6.3) in the path whose weight is minimum and i is the Inv1C. In fifth

case, if wmax > k2w2 in TTRP , where w2 = max{w(v), v ∈ G}, wmax = max{w(Li), w(Ri)},

k2 be the number of nodes in such path between Li, Ri whose weight is minimum, except

the root i and wmax > 0, then w∗(Li) = w∗(Ri) by enhance the weights of all nodes up to

maximum weight except the root i maintaining the bounding conditions (Section 6.3) in path

whose weight is minimum and reducing the weights of some nodes except the root i in the

path whose weight is maximum and i is the Inv1C. In sixth case, if wmax < k2w2 in TCIR,

where w2 = max{w(v), v ∈ G}, wmax = max{w(Li), w(Ri)}, k2 be the number of nodes in

such path between Li, Ri whose weight is minimum, except the root i and wmax > 0, then

w∗(Li) = w∗(Ri) by enhance the weights of some nodes except the root i maintaining the

bounding conditions (Section 6.3) in the path whose weight is minimum and i is the Inv1C.

Our proposed algorithm to the Inv1C location problem of the tree for the TraG G is as

follows:

Algorithm 1-INV-TRP-TREE



118 Chapter 6. Inverse 1-center location problem on trapezoid graphs

Input: Weighted TraG G = (V,E) with its TraD Ti = [ai, bi, ci, di], i = 1, 2, . . . , n.

Output: Vertex i as the Inv1C of the TraG G = (V,E) with the help of its tree T ′TRP .

Step 1. Construction of the tree TTRP with root i //Algorithm TRP-TREE//.

Step 2. Compute the paths Ri and Li.

Step 3. Calculate w(Li) and w(Ri).

Step 4. //Modification of the tee TTRP //

Step 4.1. If w(Li) = w(Ri), then i is the Inv1C of TTRP .

Step 4.2. If w(Li) 6= w(Ri), then

Step 4.2.1. If wmin = k1w1 in TTRP , then w∗(Li) = w∗(Ri) by reducing

the weights of all nodes except the node i, i.e.,root i up to minimum

weight maintaining the bounding condition in the path whose weight is

maximum, then go to Step 4.3.

Step 4.2.2. If wmin > k1w1 in TTRP , then w∗(Li) = w∗(Ri) by reducing

the weights of some nodes except the root i maintaining the bounding

condition in the path whose weight is maximum, then go to Step 4.3.

Step 4.2.3. If wmin < k1w1 in TTRP , then w∗(Li) = w∗(Ri) by reducing

the weights of all nodes except the root i up to minimum

weight maintaining the bounding condition in the path whose weight is

maximum and enhance the weights of some nodes except the

root i in the path whose weight is minimum, then go to Step 4.3.

Step 4.2.4. If wmax = k2w2 in TTRP , then w∗(Li) = w∗(Ri) by enhance

the weights of all nodes except the root i up to maximum

weight maintaining the bounding condition in the path whose weight

is minimum, then go to Step 4.3.

Step 4.2.5. If wmax > k2w2 in TTRP , then w∗(Li) = w∗(Ri) by enhance

the weights of all nodes except the root i up to maximum weight

maintaining the bounding condition in path whose weight is minimum

and reducing the weights of some nodes except the root i in the path

whose weight is maximum, then go to Step 4.3.

Step 4.2.6. If wmax < k2w2 in TTRP , then w∗(Li) = w∗(Ri) by enhance

the weights of some nodes except the root i maintaining the

bounding condition in the path whose weight is minimum, then

go to Step 4.3.

Step 4.3. Modified tree T ′TRP of the tree TTRP with



6.4. Algorithm and its complexity 119

w∗(Li) = w∗(Ri), and i is the Inv1C.

end 1-INV-TRP-TREE.

Using above Algorithm 1-INV-TRP-TREE we can find out the Inv1C location prob-

lem on any weighted tree. Justification of this statement follows the following illustration.

Illustration of the Algorithm 1-INV-TRP-TREE to the tree TTRP in Figure 6.3 :

Let i = 1 be the pre-specified node of the tree TTRP which is to be Inv1C. Next we find the

longest path Li from the node 1 to other node 10, i.e. the path 1 → 2 → 5 → 9 → 10 and

find another longest path Ri from 1 to the node 8 does not contain any node of the path Li

except 1, i.e. the path 1→ 4→ 6→ 7→ 8.

Next calculate the weights of the paths Li and Ri. Let w(Li) and w(Ri) be the to-

tal weights of the nodes except the root i = 1 of the paths Li and Ri respectively. Here

w(Li) = 22 and w(Ri) = 28. Therefore, w(Li) 6= w(Ri). Therefore wmin = w(Li) = 22 and

wmax = w(Ri) = 28. Again k1 = 4 and w1 = 3, then k1w1 = 12. Therefore wmin > k1w1.

Next calculate (wmax − wmin). Therefore (wmax − wmin) = (28 − 22) = 6. Therefore we

can decrease the weights (wmax −wmin) from the nodes except the root i in the path whose

weight is maximum using the conditions of non-linear semi-infinite (or nonlinear) optimiza-

tion model technique (Section 6.3). Now we subtract the weight 3 from the weight of the

node 4 in Ri, again we subtract the weights 1, 2 from the weights of the nodes 6, 7 re-

spectively in Ri, then we get w∗(Ri) = {(6 − 3) + (4 − 1) + (5 − 2) + 13} = 22. Again

w∗(Li) = wmin = w(Li) = 22, hence we get w∗(Li) = w∗(Ri). Therefore the node 1 is the

Inv1C.

Now we have the modified tree T ′TRP (Figure 6.4) with modified node weight.

v
u v v

vv
v v
v v

1(5)

2(3)

5(4)

9(7)

10(8)

3(4)
4(6− 3)

6(4− 1)

7(5− 2)

8(13)

Level

0

1

2

3

4

Figure 6.4: Modified tree T ′TRP of the tree TTRP .

Next we shall prove the following important result.



120 Chapter 6. Inverse 1-center location problem on trapezoid graphs

Lemma 6.4.1 The Algorithm 1-INV-TRP-TREE correctly computes the Inv1C of the

weighted TraG.

Proof. Let i be the pre-specified node in TTRP . We have to prove that i is the Inv1C. At

first, by Step 1, we have constructed the tree TTRP (as per section 6.3) with root i, by Step 2,

compute the longest paths Ri and Li from i to the tree TTRP , by Step 3, calculate the weight

of the paths Li and Ri from i except i, i.e. w(Li) and w(Ri). In Step 4, If w(Li) = w(Ri),

then i is the node one center as well as Inv1C of TTRP (Step 4.1). But if w(Li) 6= w(Ri),

then modify the tree TTRP under the conditions of non-linear semi-infinite (or nonlinear)

optimization model (Step 4.2). By Step 4.3, modify the circular-arc tree TTRP we get the

weights w∗(Li) and w∗(Ri) of both sides of i and we get w∗(Li) = w∗(Ri). Therefore i is

the Inv1C. Hence Algorithm 1-INV-TRP-TREE correctly computes the Inv1C for any

node weighted tree. �

We have another important observation in the tree T ′TRP given by the Algorithm 1-

INV-TRP-TREE.

Lemma 6.4.2 The specified node i in the modified tree T ′TRP is the Inv1C.

Proof. By Algorithm 1-INV-TRP-TREE, finally we get w∗(Li) = w∗(Ri) in the mod-

ified tree T ′TRP . Therefore the specified node i in the modified tree T ′TRP is the Inv1C.

�

The following describe the total T-complexity of the algorithm to compute Inv1C problem

on the weighted tree corresponding to the weighted TraG G.

Theorem 6.4.1 The T-complexity to find Inv1C problem on a given weighted tree T ′TRP

corresponding to the weighted TraG G is O(n), where n is the number of nodes of the graph.

Proof. Step 1 takes O(n) time, since the adjacency relation of TraG can be tested in O(1)

time. Step 2, i.e. longest weighted path from i to vi can be computed in O(n) time if TTRP is

traversed in a depth-first-search manner. Step 3 takes O(n) time to compute the sum of the

weights of the paths. Also, Step 4.1 takes O(1) time. Computation of k1 and k2, i.e. number

of nodes in Ri and Li takes O(n) time, so each Step 4.2 takes O(n) time (since comparison

of two numbers and distribution of the excess weight takes O(n) time, so, each Step 4.2.1

to 4.2.6 can be computed O(n) time). Also, modification of weights in either Ri or Li just

takes O(n) time as TTRP contains n nodes and (n − 1) edges, so Step 4.3 can be executed

in O(n) time. So total T-complexity of our suggested Algorithm 1-INV-TRP-TREE is

O(n) time, where n be the number of nodes of the TraG. �



6.5. Summary 121

6.5 Summary

Here we investigated the Inv1C location problem with node weights on the weighted TraG

G. Firstly, we develop minimum heighted tree with two branches of level difference either

zero or one of the TraG. Secondly, we modified the tree maintaining the bounding conditions

to get Inv1C. The T-complexity of our suggested algorithm is O(n), where n is the number

of nodes of the TraG G.



122 Chapter 6. Inverse 1-center location problem on trapezoid graphs


