
Chapter 5

Computation of a minimum

average distance tree and inverse

1-centre location problem on

permutation graph∗

5.1 Introduction

Suppose G = (V , E) be an UndG , where V = {1, 2, . . ., n}, |V | = n and |E| = m. Now,

the graph G is familiar as a Per if and only if there is a permutation π = {π(1), π(2), . . .,

π(n)} on the set V of nodes such that ∀ i1, i2 ∈ V , (i1, i2) ∈ E iff

(i1 − i2)(π−1(i1)− π−1(i2)) < 0,

where for every i1 ∈ V , π−1(i1) indicates the location of the number i1 in π [49]. In this

paper, we consider a connected PerG. PerG can be displayed as a subclass of IntG [49].

Furthermore, PerG are the subclass of ComG [86]. Also, PerG can be reveled by the MchD,

in which two horizontal parallel lines, named as top line and bottom line are exist.

We place the members of V on the top line, in ascending order and for each i1 = 1, 2,

. . ., n place the permutation number π(i) on the bottom line just under the number i1 on

the top line. After then, we join two i1’s situated on the top line and on the bottom line by

drawing a line segment between them, for each i1 = 1, 2, . . . n ([49]). We also label a drawn

line segment by i1 if it is drawn by joining two i1’s. Beside these, we create each node of the

∗A part of the work presented in this chapter is published in (i) Annals of Pure and Applied Mathematics,
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86 Chapter 5. MADT and inverse 1-centre location problem on PerGs

PerG for each line segment in the MchD. If two line segments i1 and i2 cuts each other in

the MchD then (i1, i2) ∈ E. The converse is true also.

Figure 5.1 represents the PerG G and Figure 5.2 is the corresponding MchD of the PerG

G.
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Figure 5.1: A PerG G.
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Figure 5.2: MchD of the PerG G of Figure 5.1.

In this chapter, we have designed

(i) an O(n2) time algorithm to build a MADT for a given PerG G, and

(ii) an O(n) time algorithm to measure Inv1C location problem on weighted PerG where n

is the number of nodes of the graph.

5.2 Organization of the chapter

Section 5.3 and its subsections contain the method of the construction of the tree, the MdsT,

modified tree of the tree T , an algorithm to get MADT of the PerG and the T-complexity

of the unweighted PerG. In Section 5.4 and its subsections presents about weighted PerG,

its corresponding MchD, construction of the w-tree, BFS tree, MdsT of the corresponding

weighted PerG, an algorithm and its T-complexity for Inv1C of the weighted PerG. In Section

5.5, we give the summary of the chapter.
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5.3 MADT for permutation graph

5.3.1 Construction of BFS tree on permutation graph

It is common fact that BFS is a very important graph traversal technique and BFS also

constructs a BFS tree. In BFS if we started with node v, then we first scan all edges incident

on v and then shift to an adjacent node w. At w we then study all edges incident to w and

shift to a node which is adjacent to w. This process is ongoing till all the edges in the graph

are scanned [32].

BFS tree can be established on general graphs in O(x+ y) time, where x and y represent

the number of nodes and number of edges respectively [96]. For construction of this BFS

tree on a PerG, we must consider the MchD. At first the line segment x1 is placed on the

zero level and all nodes adjacent to x1 is placed on the first level. Then we travel through

the MchD step by step. At first step we first scan the untraversed line segment which are

placed at the right side of line segments x1 and in the next step we scan all untraversed

line segments which are placed at the left side of the line segment x1. In each iteration, we

scan the numbers within an interval on the top channel and then scan permutation number

within an interval on the bottom channel alternatively in an order. Mondal et al. [71]

recently have structured an algorithm for construction a BFS tree T ∗(i) with root as i on

TraG in O(n) time, where n is the number of vertices and Barman et al. have constructed

another algorithm to construct the BFS tree on a PerG with any vertex x as root in O(n)

time [8]. Figure 5.3 is the BFS tree which is constructed by the Algorithm PBFS [8].

5.3.2 Computation of minimum diameter spanning tree

Let T (1), T (π(1)) be two BFS trees constructed by Algorithm PBFS [8] of a PerG G. Let

T be the least height tree between T (1) and T (π(1)).

Suppose P be the main path (longest path) of T of the PerG G and it is denoted by

u∗0 → u∗1 → u∗2 → · · · → u∗k, where k ≤ (n − 1) and u∗0 is either the node 1 or the node

corresponding to π(1) of G. The nodes of the path P , i.e. u∗i , i = 0, 1, 2, 3, . . . , k specified as

internal nodes.

We have the following terms and conditions:

The open neighbourhood of the node u∗i in the path P of G which is denoted by N(u∗i )

and defined as N(u∗i ) = {u : (u, u∗i ) ∈ E} and second is the closed neighbourhood N [u∗i ] =

{u∗i } ∪N(u∗i ), where E is the edge set of the given PerG.

After that we define the level of the vertex u as the distance of u from the root i of the
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Figure 5.3: BFS tree T rooted at vertex 1 of the PerG G shown in Figure 5.1.

BFS tree T (i) and indicate it by level(u), u ∈ V and take the level of the root i as 0. The

level of each node on BFS tree T (i), i ∈ V can be allocate by the BFS algorithm of Chen

and Das [21]. The level of each vertex of the tree T can be calculated in O(n) time.

According to the construction of BFS tree by the algorithm PBFS [8], we must have to

pay attention about the result in BFS tree T .

In PerD, there are two intersecting line segments of V-type or inverted V-type defined as

the scissors type line segments of PerG. Figure 5.4 gives the illustration of scissors type line

segments.

Lemma 5.3.1 Least number of scissors type line segments with maximum spread of the

PerD covering the whole region.

Proof. Let {1, 2, . . . , n} be the set of numbers and {π(1), π(2), . . . , π(n)} be the permutation.

Covering from 1 to n, i.e. whole region, there are two types of scissors, indicated as dotted

lines (V-type) and continued lines (inverted V-type), which is shown in the Figure 5.4 and

Figure 5.5.

At first, if we select first dotted line segment (1, π−1(1)) on the top line, then we consider

such line segment (i, π−1(i)), which is maximum spread among all adjacent to the correspond-

ing first line segment 1 and we marked all the line segment adjacent to 1. After that, we

must consider such line segment (j, π−1(j)) which is maximum spread among all unmarked

line segment adjacent to i, continuing this process until all the line segments are covered, i.e.

marked. Assuming this path be of the type top→ bottom→ top→ bottom→ . . ..

Similar idea must be followed from the bottom line. After following this manner, we obtain

the another path of the form bottom→ top→ bottom→ top→ . . .. In this way entire region

is covered by the both paths.
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Figure 5.5: Region covered by the projection of minimum number of line segments.

Next, we would like to consider minimum path between them which will be the shortest

path to covered all the line segments. Therefore, the scissors type lines segment of the PerG

covered the entire region. �

Lemma 5.3.2 [8] Two crossing line segments of the PerG of the MchD are allowed on the

same level or adjacent levels.

Lemma 5.3.3 If x, y ∈ V and |level(x) − level(y)| > 1 in T , then an edge does not exist

between the nodes x and y in G.

Proof. Let |level(x) − level(y)| > 1 and (x, y) ∈ E, so by Lemma 5.2.2 either level(x) =

level(y) or |level(x) − level(y)| = 1 which is contradict to |level(x) − level(y)| > 1. Hence

(x, y) 6∈ E, i.e. the edge does not exist between the nodes x and y. �

The T-complexity of the algorithm PBFS is given below.

Theorem 5.3.1 [8] BFS tree can be completed in O(n) time for a PerG containing n nodes.

So this BFS tree is a spanning tree.

Next we prove that this spanning tree is a MdsT..

Lemma 5.3.4 The tree T is a MdsT.

Proof. As stated by the erection the BFS tree, the longest path of the tree T is the greatest

path, i.e. diameter of T . The longest path consists least number of scissors type line segments

(by Lemma 5.2.1). This diameter is least, as T is the least heighted tree among T (1), T (π(1)).

Again, T is a spanning tree. Hence T is a MdsT. �

In the next subsection we modify the tree T.
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5.3.3 Modification of the spanning tree T

It is noticed that T is not necessarily a MADT. So, modification is necessary. By the following

way we modify the tree T :

We first work out N(x∗i ) ∈ G for each internal node x∗i ∈ T . If there are any familiar

neighbouring nodes of two successive internal nodes of P , i.e. N(x∗i ) ∩N(x∗i+1) 6= φ then by

the following way we can move them.

i) In G, if w be the familiar neighbouring node of x∗i and x∗i+1, i.e. N(x∗i ) ∩N(x∗i+1) 6= φ,

then we count the number of nodes to the upper side (if exist) and lower side of the internal

node x∗i in T with x∗i as origin. Next count their difference, say, d1.

ii) Again, count the number of nodes to the upper part and lower part (if exist) of the

internal node x∗i+1 in T with x∗i+1 as origin (ignoring the node y). Next count their difference,

say, d2.

iii) If d1 − d2 ≤ 0, then unchanged, i.e. w is finally adjacent of x∗i in T and if d1 − d2 > 0,

then the neighbouring node w of the node x∗i is shifted to the node x∗i+1, i.e. y is finally

adjacent of x∗i+1 in T .

Same concept is used for pair of any two successive internal nodes on the main path P .

Under these conditions we establish the spanning tree T and it is denoted by T
′
. Figure 5.6

is the modified BFS tree T
′

of the BFS tree T shown in Figure 5.3.

Lemma 5.3.5 If T
′

is a BFS tree, then dT ′ (x, y) is the distance between the nodes x and y

in T ′ is given by

dT ′ (x, y) =


level(y), if x is a root,

level(y)− level(x), if x = x∗ (internal node),

|level(parent(x))− level(y)|+ 1, if x be any leaf.

Proof. Let x is the root of T
′
. There exists a shortest path x → z1 → z2 · · · → zp−1 → y

from x to any node y ∈ G, with x as parent of z1 and zi as parent of zi+1 and so on for each

i = 1, 2, . . . , p − 2 and zp−1 as parent of y. Since every node of this path is directly linked

with the next one, hence the length of this path is p = level(y). Thus d(x, y) ≤ p.

Now we show that d(x, y) 6< p. If possible, let d(x, y) = q < p. Then there is a path

x→ y1 → y2 · · · → yq−1 → y from x to any node y ∈ G. As every node of is directly linked

with the next one using Lemma 5.3.2, level(y1) is either 0 or 1 since level(x) = 0. By same

Lemma 5.3.2, level(yk+1) is either level(yk) or level(yk) + 1 or level(yk)− 1. Thus level(y2)

is 0 or 1 or 2, level(y3) is 0 or 1 or 2 or 3 and so on. Therefore level(y) is 0 or 1 or 2 or...or

q. So contradiction arises since level(y) = p and p > q. Hence d(x, y) 6≤ p which implies that
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d(x, y) = p, i.e. d(x, y) = level(y).

If x = x∗, i.e. the internal vertex, then as per rule of construction of BFS, there is a shortest

path x→ z
′
1 → z

′
2 · · · → y. Here z

′
1 is at next level of x∗, z

′
2 is at the next level of z

′
1 and so on

up to v. So d(x∗, z
′
1) = 1 = (i+1)−i, d(x∗, z

′
2) = d(x∗, z

′
1)+d(z

′
1, z

′
2) = 1+1 = 2 = (i+2)−i.

If d(x∗, z
′
k) = k = (i+k)−i, then d(x∗, z

′
k+1) = d(x∗, z

′
k)+d(z

′
k, z

′
k+1) = k+1 = (i+k+1)−i.

When x is any leaf, then there exist a path from x to y via the parent of x. If level(x) = i,

then level(parent(x)) = i− 1 and parent(x) is an internal node (as per construction of BFS

rooted as 1 or π(1)). Therefore d(x, y) = d(x, parent(x)) + d(parent(x), y) = 1 + level(y)−

level(parent(x)). �
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Figure 5.6: Modified BFS tree T ′ of the tree T shown in Figure 5.3.

5.3.4 Algorithm and its complexity

In this section, we establish the algorithm to build MADT for a given PerG. Also, the T-

complexity are introduced here.

Algorithm PMAD-TREE

Input: A PerG G = (V,E) with its permutation depiction i, π(i); i = 1, 2, . . . , n.

Output: MADT T
′

and average distance µ(T ′).

Step 1: Construct the MdsT tree T //Section 5.3.2//

and count level(x) = d(x∗, x), x∗ = 1 orπ(1).

Step 2: Complete N(x∗i ) ∈ G for all x∗i ∈ T , and r = height of T =

highest level.

Step 3: //Modification of the tree T//

Complete familiar nodes, if any, of two successive internal vertices x∗i

and x∗i+1, i = 0, 1, 2, . . . , r − 1 of the main path P may be moved



92 Chapter 5. MADT and inverse 1-centre location problem on PerGs

as leaves to the vertex x∗i+1 under the following rules otherwise remains

unchanged.

Step 3.1: For i = 0 to r − 1 do

If N(x∗i ) ∩N(x∗i+1) = φ then go to Step 3.1,

If N(x∗i ) ∩N(x∗i+1) 6= φ and let y ∈ N(x∗i ) ∩N(x∗i+1) then,

Step 3.1.1: Count the number of nodes to the upper part and

lower part of the internal node x∗i in T with x∗i as origin. Next

count their difference, d1.

Step 3.1.2: Count the number of nodes to the upper part and

lower part of the internal node x∗i+1 with it as origin

(neglecting the vertex y). Next count their difference, d2.

Step 3.1.3: If d1 − d2 ≤ 0, then unchanged and if d1 − d2 > 0, then the

adjacent node y of the internal node x∗i is shifted to the internal

node x∗i+1.

Step 3.2: Set T
′

as adjusted spanning tree of T on PerG G.

Step 4: Calculate

dT ′ (x, y) =


level(y), if x is a root,

level(y)− level(x), if x = x∗ (internal node),

|level(parent(x))− level(y)|+ 1, if x be any leaf.

and µ(T
′
) = 2

n(n−1)
∑
{x,y}⊂V (T ′ ) dT ′ (x, y).

end PMAD-TREE.

5.3.5 Illustration of the algorithm

In Figure 5.3, which is the spanning tree of the PerG G, x∗i = 1 and x∗i+1 = 7 are two

successive nodes. 2 and 4 are the familiar neighbouring of the nodes x∗i = 1 and x∗i+1 = 7,

i.e. y ∈ {2, 4}. Taking the node 1 as origin, the number of nodes to the upper side of 1 is 0

and the number of nodes to the lower side of 1 is 7. Hence their difference is d1 = 7− 0 = 7.

Again taking the node 7 as origin, the number of nodes to the upper side of 7 is 3 (ignoring

the nodes 2 and 4) and the number of nodes to the lower side of 7 is 6 when the nodes 2

and 4 are neighbouring with the node 7. Hence their difference is d2 = 6− 3 = 3. Therefore

d1 > d2. So, the nodes 2 and 4 are moved to the node 7. Then we have the modified spanning

tree T
′
(Figure 5.6).

Next count the average distance µ1(G) correlative to the tree T . Again count average

distance µ2(G) correlative to the tree T
′
. Here µ1(G) = 224/66 = 3.39(approx.) and
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µ2(G) = 216/66 = 3.27(approx.).

Clearly, µ1(G) > µ2(G). Hence T
′

is the MADT of the PerG G.

Theorem 5.3.2 The tree formed by Algorithm PMAD-TREE is the MADT.

Proof. Firstly, we have build the BFS tree T . By nature and method of construction of

BFS tree it gives least diameter (Lemma 5.3.4), i.e. there also exist a shortest path by which

every other nodes are directly linked with any internal vertices. So, this BFS tree gives the

assurance that there is no other least path to link all other nodes directly with the internal

vertices. Again, in BFS, the leaves in level difference two or more, are not neighbouring

so they may be linked via their parent node, i.e. internal nodes (Lemma 5.3.2 and Lemma

5.3.3). So for getting the minimum average distance, one leaf may be moved to next level,

i.e. connected with next internal vertex. Therefore, the sum of the distances among all

pair nodes through the main path is least (Lemma 5.3.4). Again by Step 3, we examine the

distances among the existing leaves of T . The necessary condition for shifting the leaves to

other, is the sum of the distances among the leaves, after modification, is least. Hence total

distance among the nodes in T is minimum. Therefore, the tree composed by Algorithm

PMAD-TREE is a MADT. �

Next we describe the time complexity of the algorithm.

Theorem 5.3.3 The MADT of a PerG G with n nodes, by Algorithm PMAD-TREE,

can be completed in O(n2) time.

Proof. Step 1 takes O(n) time (Theorem 5.3.1). Step 2, i.e. estimation of open neigh-

bourhood of all internal vertices on the main path and add with correlated vertices can be

calculated in O(n2) time. Each Step 3.1.1 and Step 3.1.2 takes O(n) time. Also Step 3.1.3

takes in O(1) time. But Step 3.1 runs (r − 1) times, so total T-complexity of Step 3.1 is

O(n2), where r is of O(n). Again Step 3.2 takes O(n2) time. Step 4 can be completed in

O(n2) time. Hence total T-complexity of our suggested algorithm is O(n2) time with n nodes

of the PerG. �

In the next section we consider another problem on weighted permutation graphs.
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5.4 Inverse 1-centre location problem on weighted permuta-

tion graphs

Figure 5.7 perform the weighted PerG G and Figure 5.8 is the correlative MchD of that PerG

G.

5.4.1 Construction of BFS tree on weighted permutation graph

In graph theory there are several graph traversal technique exist. For instances Breadth first

search, Depth first search, Eulerian tour, Hamiltonian tour, etc. BFS is very popular to the

researcher for its simplification and it constructs a BFS tree can be formed on general graphs

in O(n+m) time, where n and m are respectively the cardinality of node set and cardinality

of edge set [96].

Recently Barman et al. have designed an O(n) time algorithm to form a BFS tree on a

PerG [8]. In this chapter we construct a BFS tree TPER, root at 1 by the Algorithm PBFS

[8]. The Figure 5.9 represents the BFS tree.
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Figure 5.7: A PerG G.
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Figure 5.8: MchD of the PerG G of Figure 5.7.

5.4.2 Computation of minimum diameter spanning tree

Let T (1), T (π(1)) be two BFS trees constructed by Algorithm PBFS [8] of a PerG G. Let

T be the least heighted tree between T (1) and T (π(1)).

Suppose P be the main path (longest path) of T of the PerG G and it is denoted by

u∗0 → u∗1 → u∗2 → · · · → u∗k, where k ≤ (n − 1) and u∗0 is either the node 1 or the node
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Figure 5.9: BFS tree TPER rooted at vertex 1 of the PerG G shown in Figure 5.7.

corresponding to π(1) of G. The nodes of the path P , i.e. u∗i , i = 0, 1, 2, 3, . . . , k specified as

internal nodes.

We have the following terms and conditions:

The open neighbourhood of the node u∗i in the path P of G which is denoted by N(u∗i )

and defined as N(u∗i ) = {u : (u, u∗i ) ∈ E} and second is the closed neighbourhood N [u∗i ] =

{u∗i } ∪N(u∗i ), where E is the edge set of the given PerG.

After that we define the level of the vertex u as the distance of u from the root i of the

BFS tree T (i) and indicate it by level(u), u ∈ V and take the level of the root i as 0. The

level of each node on BFS tree T (i), i ∈ V can be allocate by the BFS algorithm of Chen

and Das [21]. The level of each vertex of the tree T can be calculated in O(n) time.

According to the construction of BFS tree by the algorithm PBFS [8], we must have to

pay attention about the result in BFS tree T .

In PerD, there are two intersecting line segments of V-type or inverted V-type defined as

the scissors type line segments of PerG. Figure 5.4 gives the illustration of scissors type line

segments.

Lemma 5.4.1 Minimum number of scissors type line segments with maximum spread of the

PerD cover the whole region.

Proof. Let {1, 2, . . . , n} be the set of numbers and {π(1), π(2), . . . , π(n)} be the permutation.

To cover 1 to n, i.e. whole region, there are two types of scissors, marked as dotted lines

(V-type) and continued lines (inverted V-type), shown in the Figure 5.4 and Figure 5.5.

Firstly, if we select first dotted line segment (1, π−1(1)) on top line. Then we consider such

line segment (i, π−1(i)), which is maximum spread among all adjacent to the corresponding

first line segment 1 and we marked all the line segment adjacent to 1. Next, we consider

such line segment (j, π−1(j)) which is maximum spread among all unmarked line segment
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adjacent to i, continuing this process until all the line segments are covered, i.e. marked.

Let this path be of the type top→ bottom→ top→ bottom→ . . ..

Similar manner to be followed from the bottom line. Then we obtain the another path of

the form bottom→ top→ bottom→ top→ . . .. In this way whole region is covered by the

both paths.

Next we consider minimum path between them which will be the shortest path to covered

all the line segments. Hence, the scissors type line segments of the PerG covered the whole

region. �

Lemma 5.4.2 [8] Two intersecting line segments of the PerG of the MchD are assigned on

the same level or adjacent levels.

Lemma 5.4.3 If u1, v1 ∈ V and |level(u1) − level(v1)| > 1 in TPER, then there is no edge

between the nodes u1 and v1 in G.

Proof. If possible let |level(u1) − level(v1)| > 1 but (u1, v1) ∈ E, i.e. u1 and v1

are directly connected. Since u1 and v1 are directly connected so by Lemma 5.4.2 either

level(u1) = level(v1) or |level(u1)− level(v1)| = 1 which is contradictory to the assumption

that |level(u1)− level(v1)| > 1. Hence (u1, v1) 6∈ E, i.e. u1 and v1 are not directly connected

in G. �

The T-complexity of the algorithm PBFS is stated below.

Theorem 5.4.1 [8] The BFS tree rooted at any vertex x ∈ V can be computed in O(n) time

for a PerG containing n vertices.

Obviously, this BFS tree is a spanning tree.

Now, we shall prove that this spanning tree is also a MdsT.

Lemma 5.4.4 The spanning tree TPER is a MdsT.

Proof. Using the construction the BFS tree, the main path of the tree TPER is the

greatest path which is the diameter of TPER. The main path contains minimum number of

scissors type line segments (by Lemma 5.4.1). But this diameter is minimum, because TPER

is the minimum heighted tree between T (1), T (π(1)). Also, TPER is a spanning tree. Hence

TPER is a MdsT. �

Now, before going to our suggested algorithm we introduce some notations for our algo-

rithmic purpose. Let i be the pre-specified node in G.
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Ri : Longest path right to the node i.

Li : Longest path left to the node i.

w(Ri) : Total weight of the nodes except the node i of the path Ri.

w(Li) : Total weight of the nodes except the node i of the path Li.

wlow(v) : Minimum weight of the node in the graph G.

wupp(v) : Maximum weight of the node in the graph G.

wmin : min{w(Li), w(Ri)}.

wmax : max{w(Li), w(Ri)}.

w1 : min{w(v), v ∈ G}.

w2 : max{w(v), v ∈ G}.

k1 : The number of nodes in such path between Li, Ri whose weight

is maximum, except the node i.

k2 : The number of nodes in such path between Li, Ri whose weight

is minimum, except the node i.

TPER : Weighted tree corresponding to the PerG G.

T ′PER : Modified tree of the tree TPER corresponding to the PerG G.

w∗(Ri) : Total weight of the nodes except the node i of the path Ri

after modification.

w∗(Li) : Total weight of the nodes except the node i of the path Li

after modification.

To find the Inv1C, we discuss the following two cases:

Cases I: If number of adjacent of i is one, i.e. deg(i) = 1, then we can not construct a tree

with root i and two branches. Therefore, node i is not Inv1C of the weighted tree for the

PerG.

Case II: If number of adjacent nodes to the node i are more than one, i.e. deg(i) > 1, then

we can construct a tree with root i and two branches. To get Inv1C following six possibilities

arises:

1. If the total weight of one side of the node i is equal to the total weight of other side,

i.e. w(Li) = w(Ri), then i is the center as well as the Inv1C of the graph.

2. If w(Li) 6= w(Ri), then we have following six cases :

Case-2.1. : When wmin is equal to the multiplication of the number of nodes except the

node i in the path whose weight is maximum and minimum weight of the node in the graph,

i.e. wmin = k1w1.
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Case-2.2. : When wmin is greater than the product of the number of nodes except the

node i in the path whose weight is maximum and minimum weight of the node in the graph,

i.e. wmin > k1w1.

Case-2.3. : When wmin is less than the product of the number of nodes except the node

i in the path whose weight is maximum and minimum weight of the node in the graph, i.e.

wmin < k1w1.

Case-2.4. : When wmax is equal to the multiplication of the number of nodes except the

node i in the path whose weight is minimum and maximum weight of the node in the graph,

i.e. wmax = k2w2.

Case-2.5. : When wmax is greater than the product of the number of nodes except the

node i in the path whose weight is minimum and maximum weight of the node in the graph,

i.e. wmax > k2w2.

Case-2.6. : When wmax is less than the product of the number of nodes except the node

i in the path whose weight is minimum and maximum weight of the node in the graph, i.e.

wmax < k2w2.

Under above conditions we modify the tree TPER with the help of following non-linear

semi-infinite (or nonlinear) optimization model:

Min
∑

v1∈V (TPER)

{c+1 (w(v1))x1(w(v)) + c−1 (w(v1))y1(w(v1))}

subject to

maxv1∈V (TCIR) dw(v1, i) ≤ maxv1∈V (TPER) dw(v1, q), for all q ∈ TPER(or p ∈

V (TPER)),

w(v1) = w(v1) + x1{w(v1)} − y1{w(v1)} for all v1 ∈ V (TPER),

x1{w(v1)} ≤ w+{w(v1)}, for all v1 ∈ V (TPER),

y1{w(v1)} ≤ w−{w(v1)}, for all v1 ∈ V (TPER),

x1{w(v1)}, y1{w(v1)} ≥ 0, for all v1 ∈ V (TPER),
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where w(v1) be the modified node weight, w+{w(v1)} = wupp(v1)−w(v1) and w−{w(v1)} =

w(v1) − wlow(v1) are the maximum feasible amounts by which w(v1) can be increased and

reduced respectively, i.e. wlow(v1) ≤ w(v1) ≤ wupp(v1), x1{w(v1)} and y1{w(v1)} are the

maximum amounts by which the node weight w(v1) is increased and reduced respectively,

c+1 (w(v1)) is the non negative cost if w(v1) is increased by one unit and c−1 (w(v1)) is the

non negative cost if w(v1) is reduced by one unit. Every feasible solution (x1, y1) with

x1 = {x1(w(v1)) : v1 ∈ V (TPER)} and y1 = {y1(w(v1)) : v1 ∈ V (TPER)} is also called a

feasible modification of the Inv1C location problem.

Now, we prove the following results.

Lemma 5.4.5 If wmin = k1w1 in TPER, then w∗(Li) = w∗(Ri) by reducing the weights

of all nodes except the node i, i.e. root i up to minimum weight maintaining the bounding

condition in the path whose weight is maximum and i is the Inv1C.

Proof. If k1 is the number of nodes in the maximum weighted path Li or Ri and w1 be

the minimum weight of the node among the nodes in TPER as well as Li or Ri, then there

is a scope to reduce weight of each node up to w1. As k1 nodes is there in the path Li or

Ri, so we can reduces at least k1w1 weight and hence reduced weight of the path Li or Ri

becomes k1w1. Again we have wmin = k1w1. By this way we can balance the weights of both

paths. So we get the modified tree of the tree TPER, say T ′PER. Again, since the PerG is an

arbitrary, so our assumption is true for any PerG.

Finally in T ′PER, we have w∗(Li) = w∗(Ri), which implies that i is the Inv1C of the given

weighted PerG. Hence the result. �

Lemma 5.4.6 If wmin > k1w1 in TPER, then w∗(Li) = w∗(Ri) by reducing the weights of

some nodes except the root i maintaining the bounding condition in the path whose weight is

maximum and i is the Inv1C.

Proof. Since we can decrease the weight of each node except the root up to minimum weight

of the node in TPER, so we can reduce the weight in the path whose weight is maximum in

such a way that its least weight of the path becomes k1w1. Again we have wmin > k1w1.

Therefore we can decrease the weights (wmax−wmin) from the nodes except the root i in the

path whose weight is maximum using the conditions of non-linear semi-infinite (or nonlinear)

optimization model technique (Subsection 5.4.2). By this way we can balance the weights of

both paths. So we get the modified tree of the tree TPER, say T ′PER. Again, since the PerG

is an arbitrary, so our assumption is true for any PerG.
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Finally in T ′PER, we have w∗(Li) = w∗(Ri), which implies that i is the Inv1C of the given

weighted PerG. Hence the result. �

Lemma 5.4.7 If wmin < k1w1 in TPER, then w∗(Li) = w∗(Ri) by reducing the weights of

all nodes up to minimum weight except the root i maintaining the bounding condition in the

path whose weight is maximum and enhance the weights of some nodes except the root i in

the path whose weight is minimum and i is the Inv1C.

Proof. Since we can decrease the weight of each node up to minimum weight of the node in

TPER, so we can reduce the weights of the nodes except the root in the path whose weight

is maximum in such a way that its least weight of the path becomes k1w1. Again we have

wmin < k1w1. Therefore we can increase the weights (k1w1 −wmin) to the nodes except the

root in the path whose weight is minimum using the conditions of non-linear semi-infinite

(or nonlinear) optimization model technique (Subsection 5.4.2). By this way we can balance

the weights of both paths. So we get the modified tree of the tree TPER, say T ′PER. Again,

since the PerG is an arbitrary, so our assumption is true for any PerG.

Finally in T ′PER, we have w∗(Li) = w∗(Ri), which implies that i is the Inv1C of the given

weighted PerG. Hence the result. �

Lemma 5.4.8 If wmax = k2w2 in TPER, then w∗(Li) = w∗(Ri) by enhance the weights of

all nodes up to maximum weight except the root i maintaining the bounding condition in the

path whose weight is minimum and i is the Inv1C.

Proof. If k2 is the number of nodes in the minimum weighted path Li or Ri and w2 be the

maximum weight of the node among the nodes in TPER as well as Li or Ri, then there is

a scope to increase the weight of each node up to w2. As k2 nodes is there in the path Li

or Ri, so we can enhance atmost k2w2 weight and hence enhanced weight of the path Li or

Ri becomes k2w2. Again we have wmax = k2w2. By this way we can balance the weights of

both paths. So we get the modified tree of the tree TPER, say T ′PER. Again, since the PerG

is an arbitrary, so our assumption is true for any PerG.

Finally in T ′PER, we have w∗(Li) = w∗(Ri), which implies that i is the Inv1C of the given

weighted PerG. Hence the result. �

Lemma 5.4.9 If wmax > k2w2 in TPER, then w∗(Li) = w∗(Ri) by enhance the weights of

all nodes up to maximum weight except the root i maintaining the bounding condition in the

path whose weight is minimum and reducing the weights of some nodes except the root i in

the path whose weight is maximum and i is the Inv1C.
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Proof. Since we can increase the weight of each node up to maximum weight of the node in

TPER, so we can enhance the weights of all nodes except the root i in the path whose weight

is minimum in such a way that its greatest weight of the path becomes k2w2. Again we have

wmax > k2w2. Therefore we can reduces the weights (wmax−k2w2) to some nodes except the

root in the path whose weight is maximum using the conditions of non-linear semi-infinite

(or nonlinear) optimization model technique (Subsection 5.4.2). By this way we can balance

the weights of both paths. So we get the modified tree of the tree TPER, say T ′PER. Again,

since the PerG is an arbitrary, so our assumption is true for any PerG.

Finally in T ′PER, we have w∗(Li) = w∗(Ri), which implies that i is the Inv1C of the given

weighted PerG. Hence the result. �

Lemma 5.4.10 If wmax < k2w2 in TPER, then w∗(Li) = w∗(Ri) by enhance the weights of

some nodes except the root i maintaining the bounding condition in the path whose weight is

minimum and i is the Inv1C.

Proof. Since we can increase the weight of each node up to maximum weight of the node

in TPER, so we can enhance the weights of the nodes except the root i in the path whose

weight is minimum in such a way that its greatest weight of the path becomes k2w2. Again

we have wmax < k2w2. Therefore we can increase the weights (wmax −wmin) to some nodes

except the root i in the path whose weight is minimum using the conditions of non-linear

semi-infinite (or nonlinear) optimization model technique (Subsection 5.4.2). By this way

we can balance the weights of both paths. So we get the modified tree of the tree TPER, say

T ′PER. Again, since the PerG is an arbitrary, so our assumption is true for any PerG.

Finally in T ′PER, we have w∗(Li) = w∗(Ri), which implies that i is the Inv1C of the given

weighted PerG. Hence the result. �

5.4.3 Algorithm and its complexity

In this section we choose an algorithm for the Inv1C location problem on the vertex weighted

tree TPER. The main idea of our suggested algorithm is as follows:

Let TPER be a weighted tree corresponding to the PerG G with n vertices and (n − 1)

edges. Let V be the vertex set and E be the edge set. Let i be any non-pendant specified

vertex in the tree TPER which is to be Inv1C. At first we calculate the path whose weight

is maximum from i to any pendant vertex of TPER. Let Li and Ri be the left and right

paths from i in which weights are maximum with respect to sides. Let w(Li), w(Ri) be

the sum of weights of the vertices except the root of the paths Li, Ri respectively with
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respect to the vertex i. If w(Li) = w(Ri), then i is the center as well as the Inv1C of

the graph. If w(Li) 6= w(Ri), then six cases may arise. In the first case, if wmin = k1w1

in TPER, where w1 = min{w(v), v ∈ G}, wmin = min{w(Li), w(Ri)}, k1 be the number

of vertices in such path between Li, Ri whose weight is maximum, except the root i and

wmin > 0, then w∗(Li) = w∗(Ri) by reducing the weights of all vertices up to minimum

weight except the vertex i, i.e.,root i maintaining the bounding condition (Subsection 5.4.2)

in the path whose weight is maximum and i is the Inv1C. In the second case, if wmin > k1w1

in TCIR, where w1 = min{w(v), v ∈ G}, wmin = min{w(Li), w(Ri)}, k1 be the number

of vertices in such path between Li, Ri whose weight is maximum, except the root i and

wmin > 0, then w∗(Li) = w∗(Ri) by reducing the weights of some vertices except the root i

maintaining the bounding conditions (Section 5.4.2) in the path whose weight is maximum

and i is the Inv1C. In third case, if wmin < k1w1 in TCIR, where w1 = min{w(v), v ∈ G},

wmin = min{w(Li), w(Ri)}, k1 be the number of vertices in such path between Li, Ri

whose weight is maximum, except the root i and wmin > 0, then w∗(Li) = w∗(Ri) by

reducing the weights of all vertices up to minimum weight except the root i maintaining the

bounding conditions (Subsection 5.4.2) in the path whose weight is maximum and enhance

the weights of some vertices except the root i in the path whose weight is minimum and

i is the Inv1C. In fourth case, if wmax = k2w2 in TPER, where w2 = max{w(v), v ∈ G},

wmax = max{w(Li), w(Ri)}, k2 be the number of vertices in such path between Li, Ri whose

weight is minimum, except the root i and wmax > 0, then w∗(Li) = w∗(Ri) by enhance the

weights of all vertices up to maximum weight except the root i maintaining the bounding

conditions (Subsection 5.4.2) in the path whose weight is minimum and i is the Inv1C. In fifth

case, if wmax > k2w2 in TPER, where w2 = max{w(v), v ∈ G}, wmax = max{w(Li), w(Ri)},

k2 be the number of vertices in such path between Li, Ri whose weight is minimum, except

the root i and wmax > 0, then w∗(Li) = w∗(Ri) by enhance the weights of all vertices up to

maximum weight except the root i maintaining the bounding conditions (Section 5.4.2) in

path whose weight is minimum and reducing the weights of some vertices except the root i in

the path whose weight is maximum and i is the Inv1C. In sixth case, if wmax < k2w2 in TCIR,

where w2 = max{w(v), v ∈ G}, wmax = max{w(Li), w(Ri)}, k2 be the number of vertices in

such path between Li, Ri whose weight is minimum, except the root i and wmax > 0, then

w∗(Li) = w∗(Ri) by enhance the weights of some vertices except the root i maintaining the

bounding conditions (Subsection 5.4.2) in the path whose weight is minimum and i is the

Inv1C.

Our proposed algorithm to the Inv1C location problem of the tree for the PerG G is as
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follows:

Algorithm 1-INV-PER-TREE

Input: Weighted PerG G with weights wj to the each vertex vj , (j = 1, 2 . . . , n).

Output: Vertex i as Inv1C of the tree TPER and modified tree T ′PER.

Step 1. Construction of the tree TPER with root i //Algorithm PER-TREE//.

Step 2. Compute the longest paths Ri and Li from i to the tree TPER.

Step 3. Calculate w(Li) and w(Ri).

Step 4. //Modification of the tee TPER//

Step 4.1. If w(Li) = w(Ri), then i is the vertex one center as well as Inv1C

of TPER.

Step 4.2. If w(Li) 6= w(Ri), then

Step 4.2.1. If wmin = k1w1 in TPER, then w∗(Li) = w∗(Ri) by reducing

the weights of all vertices except the vertex i, i.e.,root i up to

minimum weight maintaining the bounding condition in the path whose

weight is maximum, then go to Step 4.3.

Step 4.2.2. If wmin > k1w1 in TPER, then w∗(Li) = w∗(Ri) by reducing

the weights of some vertices except the root i maintaining the

bounding condition in the path whose weight is maximum, then go to

Step 4.3.

Step 4.2.3. If wmin < k1w1 in TPER, then w∗(Li) = w∗(Ri) by reducing

the weights of all vertices except the root i up to minimum weight

maintaining the bounding condition in the path whose weight is

maximum and enhance the weights of some vertices except the root i

in the path whose weight is minimum, then go to Step 4.3.

Step 4.2.4. If wmax = k2w2 in TPER, then w∗(Li) = w∗(Ri) by enhance

the weights of all vertices except the root i up to maximum

weight maintaining the bounding condition in the path whose weight is

minimum, then go to Step 4.3.

Step 4.2.5. If wmax > k2w2 in TPER, then w∗(Li) = w∗(Ri) by enhance

the weights of all vertices except the root i up to maximum weight

maintaining the bounding condition in path whose weight is minimum

and reducing the weights of some vertices except the root i in the path

whose weight is maximum, then go to Step 4.3.

Step 4.2.6. If wmax < k2w2 in TPER, then w∗(Li) = w∗(Ri) by enhance
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the weights of some vertices except the root i maintaining the

bounding condition in the path whose weight is minimum, then go to

Step 4.3.

Step 4.3. Modified tree T ′PER of the tree TPER with w∗(Li) = w∗(Ri), and

i is the Inv1C.

end 1-INV-PER-TREE.

Using above Algorithm 1-INV-PER-TREE we can find out the Inv1C location problem

on any w-tree. Justification of this statement follows the following illustration.

Illustration of the Algorithm 1-INV-PER-TREE to the tree TPER in Figure 5.9:

Let i = 1 be the pre-specified vertex of the tree TPER which is to be Inv1C. Next we find the

longest left path Li from the vertex 1 to other vertex 3, i.e. the path 1→ 3 and find longest

right path Ri from 1 to the vertex 11 does not contain any vertex of the path Li except 1,

i.e. the path 1 → 7 → 6 → 9 → 8 → 12 → 11. Next calculate the weights of the paths Li

and Ri. Let w(Li) and w(Ri) are the total weights of the vertices except the root i = 1 of

Li and Ri respectively. Here w(Li) = 4 and w(Ri) = 24. Therefore wmin = w(Li) = 4 and

wmax = w(Ri) = 24. Again k1 = 6 and w1 = 1, then k1w1 = 6. Therefore wmin < k1w1.

Therefore we reduce the weights of each vertex in Ri except the root i = 1 up to minimum

weight 1 maintaining the bounding conditions (Subsection 5.4.2) and increase the weight 2 to

the vertex 3 in Li, then we get w∗(Ri) = {1+(7−6)+(3−2)+(2−1)+(6−5)+(5−4)} = 6.

Again w∗(Li) = 4+2 = 6, hence we get w∗(Li) = w∗(Ri). Therefore the vertex 1 is the Inv1C.

Now we have the modified tree T ′PER (Figure 5.10) with modified vertex weight.

Next we shall prove the following important result.

Lemma 5.4.11 The Algorithm 1-INV-PER-TREE correctly computes the Inv1C of the

weighted PerG.

Proof. Let i be the pre-specified vertex in TPER. We have to prove that i is the Inv1C. At

first, by Step 1, we have constructed the tree TPER (as per Subsection 5.4.1) with root i, by

Step 2, compute the longest paths Ri and Li from i to the tree TPER, by Step 3, calculate

the weight of the paths Li and Ri from i except i, i.e. w(Li) and w(Ri). In Step 4, If

w(Li) = w(Ri), then i is the vertex one center as well as Inv1C of TPER (Step 4.1). But if

w(Li) 6= w(Ri), then modify the tree TPER under the conditions of non-linear semi-infinite

(or nonlinear) optimization model (Step 4.2). By Step 4.3, modify the tree TPER we get the

weights w∗(Li) and w∗(Ri) of both sides of i and we get w∗(Li) = w∗(Ri). Therefore i is
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Figure 5.10: Modified tree T ′PER of the tree TPER.

the Inv1C. Hence Algorithm 1-INV-PER-TREE correctly computes the Inv1C for any

w-tree. �

We have another important observation in the tree T ′PER given by the Algorithm 1-

INV-PER-TREE.

Lemma 5.4.12 The specified vertex i in the modified tree T ′PER is the Inv1C.

Proof. By Algorithm 1-INV-PER-TREE, finally we get w∗(Li) = w∗(Ri) in the mod-

ified tree T ′PER. Therefore the specified vertex i in the modified tree T ′PER is the Inv1C.

�

The following describe the total T-complexity of the algorithm to compute Inv1C problem

on the w-tree for the weighted PerG G.

Theorem 5.4.2 The T-complexity to find Inv1C problem on a given w-tree T ′PER for the

weighted PerG G is O(n), where n is the number of nodes of the graph.

Proof. Step 1 takes O(n) time, since the adjacency relation of PerG can be tested in O(n)

time. Step 2, i.e. longest weighted path from i to vi can be computed in O(n) time if TPER

is traversed in a depth-first-search manner. Step 3 takes O(n) time to compute the total
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weights of the paths. Also, Step 4.1 takes O(1) time. Computation of k1 and k2, i.e. number

of nodes in Ri and Li takes O(n) time, so each Step 4.2 takes O(n) time (since comparison

of two numbers and distribution of the excess weight takes O(n) time, so, each Step 4.2.1

to 4.2.6 can be computed O(n) time). Also, modification of weights in either Ri or Li just

takes O(n) time as TPER contains n nodes and (n− 1) edges, so Step 4.3 can be executed in

O(n) time. Hence total T-complexity of our suggested Algorithm 1-INV-PER-TREE is

O(n) time, where n is the number of nodes of the PerG. �

5.5 Summary

In this chapter, we have arranged an O(n2) time algorithm to construct a MADT for a given

PerG G with n nodes. We design the communication networks by the help of this problem.

Also, we investigated the Inv1C location problem with node weights on the tree corre-

sponding to the weighted PerG G. Firstly, we develop minimum heighted tree with two

branches of level difference either zero or one of the PerG. Secondly, we modified the tree

maintaining the bounding conditions to get Inv1C. The T-complexity of our suggested algo-

rithm is O(n), where n is the number of nodes of the PerG G. This idea can be applied to

solve the 1-center location problem to other graphs.


