
Chapter 4

Computation of a minimum

average distance tree and inverse

1-center location problem on the

circular-arc graphs∗

4.1 Introduction

A graph G(V,E) is said to be an Int for a finite family of set F which is non-empty if and only

if there is one-to-one resemblance between the non-empty set F and vertex set V such that

two sets in non-empty set F have a non-empty intersection if their corresponding vertices in

vertex set V are adjacent to each other. We can say the non-empty set F an intersection

model of G. We use G(F ) for denoting the intersection graph for G for an intersection model

F . IntGs are very important in the study of algorithms of graph theory and its applications

[49]. Some special sub-classes of IntGs are TraGs, CorGs, InvGs, CirGs, PerGs and so on.

G is called a CirG for non-empty set F , if F is a family of arcs on a circle and F is said to

be a circular-arc model of G. G is called an InvG for F , if on real line F is a family of line

segments.

Let on a circle C, S = {C1, C2, . . . , Cn} be a family of n arcs . The coordinate is a positive

integer which is assigned in each endpoint of the arcs. Each arc’s endpoints are located on

the perimeter of a circle C in the increasing order of values of the coordinates in clockwise

direction. For resemblance, each arc Ci, i = 1, 2, 3, . . . , n, is denoted by (hi, ti), where hi

∗A part of the work presented in this chapter is published in International Journal of Electronics Com-

munication and Computer Engineering, 6(3) (2015) 384-390.
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60 Chapter 4. MADT and inverse 1-center location problem on CirGs

is head and ti is tail respectively which represent the starting and the ending points of the

arc when it is traversed in clockwise direction, starting with an random chosen point on C.

Without loss of generality, we assume the following:

(i) no single arc covers the entire circle C by itself,

(ii) no two arcs can share a common endpoint,

(iii) ∪ni=1Ci = C (otherwise, the problem becomes one on InvG),

(iv) the arcs are sorted in increasing values of ti’s, i.e. ti > tj for i > j.

Also if hi’s and ti’s for i = 1, 2, . . . , n are all distinct integers, the family of the arcs S is

called canonical.

A path of a graph is an alternating sequence of distinct nodes and edges and it begins and

ends with nodes. The length of a path is total number of edges in the path. A path from

the vertex i to the vertex j is a shortest path from i to j with shortest length. The shortest

distance between the nodes i and j is denoted by dG(i, j).

Alternatively, we can define a CirG as follows:

A graph G(V,E) is a CirG iff

(i) its nodes are circularly indexed as v1, v2, . . . , vn, and

(ii) (vi, vj) ∈ E, provided Ci and Cj intersect with each other, where vi and vj are the nodes

in the graph G corresponding to the arcs Ci and Cj respectively.

It is noted that the arc Ci and the node vi or i are the same thing.

The CirGs have several applications in traffic control, genetic research [95], compiler de-

sign, etc. This graph admits some interesting sub-classes:

(i) Proper Circular-Arc Graphs: A graph G is a Proper Circular-Arc (PCA) graph if there

exists a circular-arc representation of graph G so that no arc is properly contained in

any other arc.

(ii) Unit Circular-Arc Graphs: A graph G is a Unit Circular-Arc (UCA) graph if there

exists a Circular-Arc representation of G such that all arcs are of same length. It

can be proved that UCA ⊆ PCA. In [98], the author exposed that this inclusion is

controlled. An example of a PCA graph but not a UCA graph has also been described

by Golumbic [49].

(iii) Helly Circular-Arc Graphs: When each subfamily of it consisting of pairwise intersect-

ing subsets has a common element, a family of subsets S gratifies the Helly property.

So, if there is a Circular-Arc representation of G such that the arcs satisfy the Helly

property, a graph G(V,E) is a Helly Circular-Arc (HCA) graph.
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Figure 4.1: A CirG G.

"!
# rC1

C2
C3

C4

C5
C6

C7

Figure 4.2: CirD of the CirG G of Figure 4.1.

(iv) Clique-Helly Circular-Arc graphs: If a graph G(V,E) is a CirG and a Clique-Helly

graph, then the graph G is a Clique-Helly Circular-Arc (CH-CA) graph . A graph G

is Clique-Helly when its cliques satisfy the Helly property.

Tucker [99] discussed an O(n3) time algorithm to recognize a CirG. Also, Deng et al. [31]

proposed an O(n + m) time algorithms to recognize the PCA graphs and proper interval

graphs. Several many other algorithms have been designed for circular-arc graphs [74, 75,

90, 92, 93].

Breadth-First-Search (BFS) is an approach to search in a graph where search is limited

to two essential operations: (a) visit and review a vertex of a graph; (b) get access to visit

the nodes that neighbour the currently visited vertex. Begining at a root node, BFS inspect

all the neighbouring vertices. Then for every of those neighbour vertices, it traverses their

neighbour vertices that are unvisited and so on.

Breadth First Search is an uniformed search technique that is aimed to expand every

vertices of a graph or combination of sequences by systematically searching through every

solution. It exhaustively searches the entire graph without considering the target until it

finds a BFS Tree.

Let G(V,E) be a undirected connected graph, v be a vertex of graph G and T is the
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spanning tree obtained by the BFS on graph G starting from the node v. An appropriate

rooted tree T (v) = (V,E
′
) ⊆ G let us say a Breadth-First-Search Tree (BFS tree, in short)

with the root v, the edges of graph G that do not appear in the BFS tree, we call them as

non-tree edges.

The average distance µ(G) of graph G(V,E) is the average over all unordered pairs of

nodes of the distances,

µ(G) =
2

n(n− 1)

∑
u,v∈V (G)

dG(u, v).

The MADST of a CirG G is a spanning tree of graph G having minimum average distance.

MADTs which are also referred to as minimum routing cost spanning trees, are of interest in

design of the communication networks [55]. One is interested in designing a tree sub-network

of a given network, such that on average, one can reach every node from every other node

as fast as possible. In this chapter, we have designed

(i) an O(n2) time algorithm to construct a MADT for a given CirG G, and

(ii) an algorithm to compute Inv1C location problem on weighted CirGs in O(n) time, where

n is the number of vertices of the weighted CirG.

4.2 Organization of the chapter

In the next section, i.e. in Section 4.3 and its subsections we present the construction

of the tree, MdsT, modified spanning tree of the tree T , an algorithm of MADT and its

T-complexity of the unweighted CirG. In Section 4.4 and its subsections we present some no-

tations, construction of minimum heighted tree, an algorithm of the modified vertex weighted

tree corresponding to the CirG G. The T-complexity is also calculated in this section. In

Section 4.5, we give the summary.

4.3 Minimum average distance tree on circular-arc graph

4.3.1 Construction of BFS tree on circular-arc graph

It is well known that BFS is an important graph traversal technique and also BFS constructs

a BFS tree. In BFS, started with vertex v, we first scan all edges incident on v and then

move to an adjacent vertex w. At w we then scan all edges incident to w and move to a

vertex which is adjacent of w. This process is continued till all the edges in the graph are

scanned.

BFS tree can be constructed on general graphs in O(n+m) time, where n and m represent
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respectively the number of vertices and number of edges [96]. To construct this BFS tree

on a CirG we consider the CirD. We first number the vertices of the CirG successively

by 1, 2, 3, . . . , n corresponding to the circular arcs C1, C2, . . . , Cn according to the order of

ending points ti (the tail) of the circular arcs respectively when it is traversed in clockwise

manner. To construct the rooted tree, we traverse the graph in anticlockwise manner. Firstly,

we placed the vertex corresponding to the maximum length of the arcs Ci (i 6= 1), which

are adjacent to the arc C1, as a root and put in zero level. Then we traverse all vertices

(corresponding to arcs) adjacent to Ci and placed them on the first level. Next we traverse

the CirD step by step until all vertices corresponding to the arcs are traversed. In this

way, we get a left BFS tree, denoted by TL(i). Secondly, we construct BFS tree by same

manner traversed in clockwise direction of the vertex corresponding to the arc C1 placed the

maximum length of the arcs Cj (j 6= 1), which are adjacent to the arc C1, as a root and

put in zero level and all vertices (corresponding to arcs) adjacent to Cj on the first level.

Next we traversed the CirD step by step. In this way, we get a right BFS tree, denoted by

TR(j). Figure 4.3(a) and 4.3(b) represent the left BFS trees TL(7) rooted at the vertex 7

corresponding to the arc C7 and a right BFS tree TR(2) rooted at the vertex 2 corresponding

to the arc C2, respectively of the CirG shown in Figure 4.3. By the following algorithm one

can design the BFS tree on CirGs.

Now, we define level of the vertex v as the distance of v from the root i of the BFS tree

T (i) and denote it by level(v), v ∈ V and take the level of the root i as 0. The level of each

vertex of the tree T can be computed in O(n) time.

By similar way we can construct the BFS tree with root i in anticlockwise manner, i.e. TL(i).

The T-complexity of the Algorithm CARBFS-TREE is stated below.

Algorithm CARBFS-TREE

Input: Sorted arcs Ci, i = 1, 2, . . . , n, with endpoints (hi, ti) of the CirD of the CirG

G = (V,E).

Output: BFS tree with root j, TR(j).

Step 1: Compute the adjacent arcs to the arc C1 and select the arc of

maximum tails tj of those adjacent arcs in clockwise sense.

Step 2: Choose the vertex j corresponding to the arc Cj as root of the tree.

Then find the adjacent vertices to j and placed them as leaves at

level 1, and mark them.

Step 3: Let k be the vertex corresponding to the arc Ck with maximum

tail tk among the tails of adjacent arcs to Cj . Then put k as node
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on main path. Next find all other unmarked adjacent arcs to Ck

and they are placed as leaves at level(k) + 1. Mark them.

Step 4: This process continued until all arcs are marked.

end CARBFS-TREE.
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Figure 4.3: BFS trees TL(7) and TR(2) rooted at vertices 7 and 2 respectively of the CirG

shown in Figure 4.1.

Theorem 4.3.1 The BFS trees TR(j) and TL(i) rooted at any vertex x ∈ V can be computed

in O(n) time for a CirG containing n vertices.

Proof. Step 1 of the above algorithm can be computed in O(n) time, because sorted arcs

and adjacent arcs are finite. In Step 2, selection of the root j takes O(1) time and to mark

the vertices adjacent to j takes O(n) time. Therefore, Step 2 runs in O(n) time. Also

computation of the vertex k corresponding to the maximum tail among the tails of the

arcs adjacent to the arc Cj takes O(n) time. So, Step 3 takes O(n) time. Since Step 4 is

the checking step, so it takes O(n) time. Hence, over all the T-complexity of Algorithm

CARBFS-TREE is O(n) time, where n is the number of vertices. �

Obviously, two BFS trees, each contains n vertices and (n− 1) edges corresponding to the

given CirG with n vertices. So, it is a spanning tree.

4.3.2 Computation of minimum diameter spanning tree

Let TL(i) and TR(j) be two BFS trees of a CirG G. Next we determine the diameters of the

trees TL(i) and TR(j). If the diameter of TL(i) is less than the diameter of TR(j), then we
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denote TL(i) by T otherwise TR(j) by T , i.e. T is the tree of minimum diameter between

the trees TL(i) and TR(j).

Let P be the path in the BFS tree T with maximum length of the CirG G, defined as

main path and it is denoted by u∗1 → u∗2 → u∗3 → · · · → u∗k corresponding to the arcs

C∗1 , C
∗
2 , C

∗
3 , . . . , C

∗
k where k ≤ n. Also, u∗i , i = 1, 2, 3, . . . , k are nodes in the main path P .

Now, we define some more terms below.

The open neighbourhood of the vertex u∗i in the path P of G, denoted by N(u∗i ) and defined

as N(u∗i ) = {u′′ : (u
′′
, u∗i ) ∈ E} and the closed neighbourhood N [u∗i ] = {u∗i } ∪N(u∗i ), where

E is the edge set of the given CirG.

As per construction of BFS tree we have the following important results in BFS tree T .

Lemma 4.3.1 If u, v ∈ V and |level(u)− level(v)| > 1 in T , then there is no edge between

the vertices u and v in G, except such (u, v) ∈ E in which level(u) = 1 and level(v) = k,

where k is the highest level.

Proof. If possible, let |level(u) − level(v)| > 1 but (u, v) ∈ E, i.e. u and v are directly

connected. Since u and v are directly connected so by the idea of breath first search, at

any stage if u and v are the adjacent to the previously visited vertex, then u and v to be

placed in same level, so level(u) = level(v). But, if u is adjacent to a previously visited

vertex then v must be adjacent to next visited vertex, and then v to be placed in the next

level in T . So, in this case |level(u) − level(v)| = 1. Thus, either level(u) = level(v)

or |level(u) − level(v)| = 1 implies (u, v) ∈ E, which is contradictory to the assumption

|level(u)− level(v)| > 1, (u, v) ∈ E.

By the process of the ordering of the arcs of the CirGs it is evident that there is at least

one arc which is extended on both sides of the fixed line (dotted line in Figure 4.2) from

which order of the arcs begins. So one end vertex of the edge (u, v) ∈ E of G is at either in

first level, i.e. at level 1 or in highest level, i.e. at level k.

Hence the result. �

Now, we shall prove that the BFS tree is a MdsT.

Lemma 4.3.2 The spanning tree T is a MdsT.

Proof. According to the construction the BFS tree, the main path of the tree T is the

longest path which is the diameter of T . The main path covers the whole circle with least

number of arcs. This diameter is minimum, because T is the minimum height tree. Also, T

is a spanning tree. Hence T is a MdsT. �
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Figure 4.4: Isomorphic trees T1L(7) and T1R(2) of the BFS trees TL(7) and TR(2) respectively,

where main path is horizontal.

In next subsection, we shall discuss about the modified spanning tree T
′

of the spanning

tree T .

4.3.3 Modification of the spanning tree T

It is observed that T is not necessarily a MADT. So, modification of T is necessary. We

modify T by the following way:

First, we draw the tree T1 (shown in Figure 4.3(a) and Figure 4.3(b)) whose main path is

horizontal and isomorphic to the tree T . Then, we compute N(u∗i ) ∈ G for each vertices on

the main path P . If there are any common adjacent vertices of two nodes u∗i and u∗i+1 in the

main path P , where i = 0, 1, 2, . . . , k − 1, then we can shift them by the following way.

Step I: In G, if any common adjacent vertex w of u∗i and u∗i+1 exist, then we calculate the

number of vertices k1, k2 respectively, on the both sides separately of the node u∗i (taken as

fixed and leaves which does not lie on main path are not countable) in T1 along the main

path. Next, calculate their difference, say, d1 = |k1 − k2|.

Step II: Again, find the number of vertices on the both sides separately of the node u∗i+1

(taken as fixed) in T1 along the main path (ignoring the vertex obtained in Step I). Next,

calculate their difference, say, d2.

Step III: Case-I: If d1 − d2 < 0, then unaltered, i.e. w remains adjacent of u∗i in T1.

Case-II: If d1 = d2, then calculate D1 =
∑

u,v∈V (T1)
dT1(u, v) (total distance

before shifting) and D2 =
∑

u,v∈V (T1)
dT1(u, v) (total distance after shifting).

If D1 < D2 then, tree remains unaltered else w is shifted.

Case-III: If d1 − d2 > 0, then the adjacent vertex w of the node u∗i is shifted to the

node u∗i+1. i.e. w is finally adjacent to u∗i+1 in T1.

Step IV: Finally represent T1 as form of tree T ′.
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Similar idea is used for pair of any two nodes on the main path P . Using this method we

construct the modified spanning tree T ′ starting from T with the help of T1. Figure 4.5(a)

and Figure 4.5(b) are the modified BFS trees T
′
L(7) and T

′
R(2) of the BFS trees TL(7) and

TR(2) respectively (shown in Figure 4.3(a) and Figure 4.3(b) respectively).

Lemma 4.3.3 If T
′

is a BFS tree, then the distance dT ′ (u, v) between the vertices u and v

in T ′ is given by

dT ′ (u, v) =



level(v), if u is a root and v is any vertex,

|level(v)− level(u)|, if u and v both are nodes in themain path P.

|level(parent(u))− level(v)|+ 1, if u is any leaf and v is any node

in the main path P.

Proof. Case I: If u is a root.

In the tree T
′
, with u as root there exists a unique shortest path u→ z1 → z2 · · · → zp−1 → v

from u to any vertex v ∈ G, where u is the parent of z1 and zi is the parent of zi+1 and so

on for each i = 1, 2, . . . , p − 2 and zp−1 is the parent of v. Since each vertex of this path is

directly connected with the next one, hence the length of this path is p = level(v). Thus

dT ′ (u, v) ≤ p.

Next we are to show that dT ′ (u, v) 6< p. If possible, let dT ′ (u, v) = q < p. Then there

exist a path u → y1 → y2 · · · → yq−1 → v from u to any vertex v ∈ G. As each vertex of

this path is directly connected with the next one, level(y1) is either 0 or 1 since level(u) = 0

and level(yk+1) is either level(yk) or level(yk) + 1 or level(yk) − 1. Thus level(y2) is 0 or

1 or 2, level(y3) is 0 or 1 or 2 or 3 and so on. Therefore level(v) is 0 or 1 or 2 or...or q.

This is a contradiction since level(v) = p and p > q. Hence dT ′ (u, v) 6< p which implies that

dT ′ (u, v) = p, i.e. dT ′ (u, v) = level(v).

Case II: If u and v both are nodes in the main path P .

If u and v both are the nodes in the main path P , then as per rule of construction of

BFS, there is a shortest path u → z
′
1 → z

′
2 · · · → v. Here z

′
1 is at next level of u, z

′
2 is at

the next level of z
′
1 and so on up to v. Let level of u be i, so d(u, z

′
1) = 1 = (i + 1) − i =

level(z
′
1)−level(u), d(u, z

′
2) = d(u, z

′
1)+d(z

′
1, z

′
2) = 1+1 = 2 = (i+2)−i = level(z

′
2)−level(u).

If d(u, z
′
k) = k = (i+ k)− i = level(z

′
k)− level(u), then d(u, z

′
k+1) = d(u, z

′
k) + d(z

′
k, z

′
k+1) =

k + 1 = (i+ k + 1)− i = level(z
′
k+1)− level(u). Hence dT ′ (u, v) = |level(v)− level(u)|.

Case III: If u is any leaf and v is any node in the main path P .

In this case, there is a path from u to v via the parent of u. If level(u) = i, then

level(parent(u)) = i − 1 and parent(u) is a node in the main path P (as per construc-

tion of BFS rooted at the vertex corresponding to the arc x with maximum length of the arc
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1 in anticlockwise manner or the vertex corresponding to the arc y with maximum length of

the arc 1 in clockwise manner). Therefore dT ′ (u, v) = d(u, parent(u)) + d(parent(u), v) =

1 + level(v)− level(parent(u)), i.e. dT ′ (u, v) = |level(parent(u))− level(v)|+ 1. �
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Figure 4.5: Modified BFS trees T ′L(7) and T ′R(2) of the trees TL(7) and TR(2) respectively

shown in Figure 4.3.

4.3.4 Algorithm and time complexity on minimum average distance tree

of circular-arc graph

Depend upon average distance, there are huge works of graphs in the literature [4, 10, 41, 53,

70, 100]. Chung [23] generate a bound of average distance of a graph in terms of independent

number. She has presented that µ(G) ≤ α(G), where α(G) and µ(G) implies commonly the

independent number and average distance of the graph G.

In [29], an InvGs average distance with the edges of unit length can be calculated in O(m)

time, where the number of edges implies m. Here, we describe about the evaluation of the

average distance of a CirG.

In analytic networks, the average distance can be used as a tool, where the time of perfor-

mance is proportional between any two node’s distance . It is the measurement of the time

needed in the average case, which opposed to the diameter, which determines the maximum

performance time.

First we evaluate dG(u, v) for each pair u, v (u 6= v), then we evaluate sum of the distances

between all pairs of nodes and lastly we multiply it by 2/{n(n − 1)} factor to get average

distance. From the above technique, it follows that the time to evaluate the average distance

is same as the time to evaluate all-pairs shortest distances.

Here, we propose an efficient algorithm to create MADT for a given CirG. Also, the cor-

rectness and the T-complexity of the algorithm are presented here.
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Algorithm CAMAD-TREE

Input: Sorted endpoints of the arcs S = {C1, C2, . . . , Cn} of the CirD of the CirG G =

(V,E).

Output: The MADT T
′

and the average distance µ(T ′).

Step 1: Evaluate the MdsT T //Subsection 4.3.2//

and we calculate level(u) = d(u∗, u), u∗ is either the vertex corresponding

to the arc of maximum length of the arcs, which are adjacent to C1 in

clockwise manner or the vertex corresponding to the arc of maximum

length of the arcs, which are adjacent to C1 in anticlockwise manner.

Step 2: Evaluate N(u∗i )∀u∗i ∈ T and height of the tree T is k.

Step 3: //Construction of Modified of the tree T//

Evaluate N(u∗i ) and N(u∗i+1) for i = 0, 1, 2, 3, . . . , k − 1 on the main

path P . Let the tree T1 whose main path is horizontal and

isomorphic to the tree T .

Step 3.1: For i = 0, 1, . . . k − 1 do

If N(u∗i ) ∩N(u∗i+1) = φ then, go to Step 3.1,

If N(u∗i ) ∩N(u∗i+1) 6= φ and let w ∈ N(u∗i ) ∩N(u∗i+1) then,

Step 3.1.1: Calculate number of nodes k1, k2 respectively, on the

both sides separately of the node u∗i (taken as fixed) in T1 along the

main path. Next, evaluate their difference, say, d1 = |k1 − k2|.

Step 3.1.2: Calculate the number of nodes on the both sides

separately of the node u∗i+1 (taken as fixed) in T1 along the main path

(ignoring the vertex obtained in Step 1). Next, evaluate the difference,

say, d2.

Step 3.1.3: If (d1 − d2) < 0, then unchanged;

if d1 − d2 = 0 then, calculate

D1 =
∑

u,v∈V (T1)
dT1(u, v)(total distance before shifting) and

D2 =
∑

u,v∈V (T1)
dT1(u, v) (total distance after shifting) and then

consider minimum{D1, D2};

if d1 − d2 > 0, then the neighbour node w of the vertex u∗i in the main path P is

shifted to the node u∗i+1 in th main path P .

Step 3.2: Fix T
′

as modified spanning tree of T1 (isomorphic to T ) of the

CirG G.



70 Chapter 4. MADT and inverse 1-center location problem on CirGs

Step 4: Calculate dT ′ (u, v) //Lemma 4.2.3//

where,

dT ′ (u, v) =



level(v), if u is a root and v is any vertex,

|level(v)− level(u)|, if u and v both are nodes in themain path P.

|level(parent(u))− level(v)|+ 1, if u is any leaf and v is any node

in the main path P.

and µ(T
′
) = 2

n(n−1)
∑

u,v∈V (T ′ ) dT ′ (u, v).

end CAMAD-TREE.

Illustration of the Algorithm CAMAD-TREE: In Figure 4.3(a), u∗i = 7 and u∗i+1 = 6

are two vertices. 5 is the common adjacent of the vertices u∗i = 7 and u∗i+1 = 6, i.e. w = 5.

Taking the vertex 7 as fixed, the number of nodes on the both sides of the node 7 in T1L(7)

along the main path are 4 and 1. Hence their difference is d1 = 4−1 = 3. Again keeping the

vertex 6 as fixed, the number of nodes on the both sides of the node 6 in T1L(7) along the

main path is 3 and is 2(ignoring the vertex 5) when the vertex 5 is neighbour of the vertex

6. So, their difference is d2 = 3− 2 = 1. Therefore d1 > d2. So, the vertex 5 is shifted to the

vertex 6. Now, we have the modification of spanning tree T
′
L(7)(Figure 4.5(a)).

Next the calculation of average distance µ1(G) corresponding to tree TL(7) (isomorphic to

T1L(7)). Again the calculation of average distance µ
′
1(G) corresponding to tree T

′
L(7). Here,

µ1(G) = 52/21 and µ
′
1(G) = 50/21. Clearly, µ1(G) > µ

′
1(G). Hence T

′
L(7) is a MADT of the

CirG G.

In Figure 4.3(b), which is Spanning Tree TR(2) of the CirG G with vertex 2 corresponding

to the arc C2 with maximum length adjacent to the arc C1 as root. u∗i = 2 and two vertices

are u∗i+1 = 7 . 1 is the common neighbour of the nodes u∗i = 2 and u∗i+1 = 7, i.e. w = 1.

Keeping the vertex 2 as fixed, number of nodes on both sides of the node 2 in T1R(2) along

the main path are 0 and 5. Hence their difference is d1 = 5− 0 = 5. Again keeping the node

7 as fixed, number of nodes on both sides of the node 7 in T1R(2) along the main path are 5

(ignoring the vertex 1) and 0 when the vertex 1 is neighbour of the node 7. Therefore, their

difference is d2 = 5 − 0 = 5. Therefore d1 = d2, i.e. d1 − d2 = 0. Then calculate D1 = 52

(total distance before shifting) and D2 = 50 (total distance after shifting) and then consider

minimum{D1, D2} = D2. So, the vertex 1 is shifted to vertex 7. Now, we have the Modified

Spanning Tree T
′
R(2) (Figure 4.5(b)).

Then we calculate average distance µ2(G) corresponding to tree TR(2) (isomorphic to

T1R(2)). Again, we calculate average distance µ
′
2(G) corresponding to tree T

′
R(2). Here,

µ2(G) = 52/21 and µ
′
2(G) = 50/21.

Clearly, µ2(G) > µ
′
2(G). Hence T

′
R(2) is the another MADT of the CirG G.
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Next, we will show that for any CirG, the tree designed by the Algorithm CAMAD-

TREE represents a MADT.

Theorem 4.3.2 For any CirG, the tree designed by the Algorithm CAMAD-TREE is

a MADT.

Proof. Let G(V,E) be a CirG. Then, using Subsection 4.3.2, one can design a MdsT. In this

MdsT, shifting (if necessary, under conditions stated in Subsection 4.3.3) of the some vertices

to its next adjacent node in the main path means that those vertices are placed on such side

of the tree, with respect to the fixed node in the main path, in which that side contains

maximum number of vertices. As a result, after all possible shifting of the vertices, the sum

of total distances over all unordered pair of nodes decreases. Thus the average distance of the

tree decreases. Hence, the tree designed by the Algorithm CAMAD-TREE is a MADT

for any CirG. This completes the proof. �

Lastly, we discuss the T-complexity of this algorithm.

Theorem 4.3.3 The MADT of a CirG G with n nodes can be evaluated in O(n2) time.

Proof. Step 1 of Algorithm CAMAD-TREE takes O(n) time (Theorem 4.3.1). To

compute the open neighbourhood of all vertices on the main path in Step 2 can be evaluated

in O(n2) time. O(n) time is needed for computing each Step 3.1.1 and Step 3.1.2. Step 3.1.3

runs in O(n) time. But as, Step 3.1 repeats (k− 1) times, the total T-complexity of Step 3.1

is O(n2), where k is of O(n). Again in Step 3.2, i.e. alteration of the tree can be evaluated

in O(n2) time. Step 4 can be evaluated in O(n2) time in worst case. Therefore, the overall

T-complexity of the proposed algorithm is O(n2) time. �

In the next section we consider another problem on weighted circular-arc graphs.
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4.4 Inverse 1-center location problem on the weighted circular-

arc graphs

In this section we discuss about Inv1C. Now, before going to our proposed algorithm we

introduce some notations for our algorithmic purpose. Let i be the pre-specified vertex in

G.

Ri : Longest path right to the vertex i.

Li : Longest path left to the vertex i.

w(Ri) : Sum of weights of the vertices except the vertex i of the path Ri.

w(Li) : Sum of weights of the vertices except the vertex i of the path Li.

wlow(v) : Minimum weight of the vertex in the graph G.

wupp(v) : Maximum weight of the vertex in the graph G.

wmin : min{w(Li), w(Ri)}.

wmax : max{w(Li), w(Ri)}.

w1 : min{w(v), v ∈ G}.

w2 : max{w(v), v ∈ G}.

k1 : The number of vertices in such path between Li, Ri whose

: weight is maximum, except the vertex i.

k2 : The number of vertices in such path between Li, Ri whose

: weight is minimum, except the vertex i.

TCIR : Weighted tree corresponding to the circular-arc graph G.

T ′CIR : Modified tree of the tree TCIR corresponding to the circular-arc

graph G.

w∗(Ri) : Sum of weights of nodes except the node i of the path Ri

after modification.

w∗(Li) : Sum of weights of nodes except the node i of the path Li

after modification.

Figure 4.6 represents the weighted CirG G and Figure 4.7 is the corresponding matching

diagram of that CirG G.

4.4.1 Construction of minimum height tree

Let i be pre-specified vertex which to be Inv1c. Here, our aim is to form a minimum height

tree, as root i, with two branches of level difference either zero or one.

Let the vertex i be the root of the tree. Then we find all adjacent vertices to i corresponding

to the arc Ci and set them as child (leaves) of i. Next consider the vertices j and k whose
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Figure 4.7: CirD of the CirG G of Figure 4.6.

maximum head hj and minimum tail tk respectively among the adjacent arcs of Ci and set

them as a vertices on the main path and marked them. Next find all adjacent arcs to the

vertices j and k and set them as respective child (leaves). This process is continue until

all arcs are marked. In this way we construct a rooted tree with two branches with level

difference either zero or one.

The proposed combinatorial algorithm to construct the tree TCIR is as follows:

Algorithm CIR-TREE

Input: Sorted arcs Ci, i = 1, 2, . . . , n, with endpoints (hi, ti) of CirD of the CirG G = (V,E)

and wi > 0, the weight of the arc Ci,(i = 1, 2, 3, 4, . . . , n) for each i.

Output: Tree TCIR with root i.

Step 1. Set fixed node i as root, and put level 0.
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Step 2. Compute the open neighbourhood of i = N(i) = {v : (v, i) ∈ E}.

Step 3. Set N(i) as the child of the root i then marked them and put them at

level 1.

Step 4. Set j = max{hj : (j, i) ∈ E} and k = min{tk : (k, i) ∈ E}.

Step 5. Set N(j) and N(k) as the child of j and k respectively on both sides

simultaneously put them at next level, i.e. at level 2 and marked them.

Step 6. This process will be continued until all arcs are marked and checked whether

level difference is 0 or 1.

Step 7. Put weight wj to the each vertex j, (j = 1, 2 . . . , n) in TCIR.

end CIR-TREE.

Illustration of the Algorithm CIR-TREE : Let i = 1 be the pre-specified vertex which

is the root whose level is 0. Next the open neighbourhood of 1 is N(1) = {2, 3, 20, 21, 22},

where the vertices of N(1) as the child of the root 1 and put them at level 1. Next, 3 has the

maximum head among the arcs of N(1) corresponding to nodes of graph G and 21 has the

minimum tail among the arcs of N(1) corresponding to nodes of graph G. Next the open

neighbourhoods of 3 and 21 are N(3) = {4, 6} and N(21) = {18, 19} respectively, where

the vertices of N(3) and N(21) as the child of the roots 3 and 21 and put them at level

2. Next 6 has the maximum head among the arcs of N(3) corresponding to nodes of graph

G and 18 has the minimum tail among the arcs of N(21) corresponding to nodes of graph

G. Next the open neighbourhoods of 6 and 18 are N(6) = {5, 7, 8, 9} and N(18) = {16, 17}

respectively, where the vertices of N(6) and N(18) as the child of the roots 6 and 18 and

put them at level 3. Next 9 has the maximum head among the arcs of N(6) corresponding

to nodes of graph G and 16 has the minimum tail among the arcs of N(18) corresponding to

the vertices of the graph G. Next the open neighbourhoods of 9 and 16 are N(9) = {10, 11}

and N(16) = {14, 15} respectively, where the vertices of N(9) and N(16) as the child of the

roots 9 and 16 and put them at level 4.

Next 11 has the maximum head among the arcs of N(9) corresponding to nodes of the

graph G and 15 has the minimum tail among the arcs of N(16) corresponding to the ver-

tices of the graph G. Next the open neighbourhoods of 11 and 15 are N(11) = {12, 13}

and N(15) = {} = φ respectively, where the vertices of N(11) as the child of the root 11

and put them at level 5. Next 13 has the maximum head among the arcs of N(11) cor-

responding to nodes of graph G. In this way we get longest left path Li from the vertex

1 to other vertex 15, i.e. the path 1 → 21 → 18 → 16 → 15 and find longest right path

Ri from 1 to the vertex 13 does not contain any vertex of the path Li except 1, i.e. the
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Figure 4.8: Tree TCIR of the CirG G of Figure 4.6.

path 1 → 3 → 6 → 9 → 11 → 13. Hence the level difference of two paths Li and Ri is

1. Next put the weights 2, 5, 8, 4, 4, 3, 9, 10, 5, 7, 8, 7, 6, 8, 10, 9, 5, 6, 11, 2, 3, 4 to the vertices

1, 22, 21, 20, 3, 2, 18, 19, 4, 6, 17, 16, 5, 7, 9, 8, 14, 15, 10, 11, 12, 13 respectively. Finally we con-

struct the rooted tree TCIR with root i = 1 (Figure 4.8).

Now we have the following important observation on TCIR.

Lemma 4.4.1 The tree TCIR formed by the Algorithm CIR-TREE is a spanning tree.

Proof. As per construction of the graph TCIR by right and left end points (hi, ti) for

i = 1, 2, 3, 4, . . . , n, scanning approach of the arcs in CirD we get n vertices and (n − 1)

edges. Also there is no repetition of the vertices, as we search only unmarked vertices, so

this is a graph without any circuit. Therefore the tree TCIR is a spanning tree.

Hence the result. �

Lemma 4.4.2 The tree TCIR formed by the Algorithm CIR-TREE is a BFS tree with

minimum height.

Proof. Actually steps of the algorithm indicates the steps of BFS technique in CirG. Thus

the tree created by the Algorithm CIR-TREE is BFS tree. Again, we traverse the CirG both

sides simultaneously with respect to maximum head and minimum tail until all unmarked

arcs are marked. As in each step we move both sides on circle, so, its height to be minimum.

�

Also the T-complexity of the Algorithm CIR-TREE to evaluate the tree TCIR is given

below:
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Theorem 4.4.1 The T-complexity of the Algorithm CIR-TREE is O(n), where n is

number of nodes of the tree.

Proof. Step 1 and Step 2 each takes O(n) time, since the arcs are already sorted and root

is selected from n arcs. Step 3 can be computed in O(n) time, since n is the number of arcs.

Since the end points of the arcs are sorted, so the maximum element (vertex) from a set

of nodes can be evaluated in O(n) time. Again intersection of two finite sets of n elements

(number of vertices) can be executed in O(n) time. Thus Step 4, Step 5 and Step 6 can

be evaluated in O(n) time. Since weight of the each vertex in tree TCIR corresponds the

weight of arcs in CirG is placed on the corresponding vertex, so, Step 7 can be executed

in O(n) time. Therefore, overall T-complexity of the proposed Algorithm CIR-TREE is

O(n) time, where n is number of the nodes of the weighted CirG. �

Thus the tree TCIR of the CirG is formed. The tree TCIR of CirG G (Figure 4.6) is shown

in Figure 4.8.

To find the Inv1C, we discuss following cases:

1. If sum of weights of one side of the vertex i is equal to the sum of weights of other side,

i.e. w(Li) = w(Ri), then i is the center as well as the Inv1C of the graph.

2. If w(Li) 6= w(Ri), then we have following six cases :

Case-2.1. : When wmin is equal to the product of the number of nodes except the vertex i

in the path whose weight is maximum and minimum weight of the vertex in the graph, i.e.

wmin = k1w1.

Case-2.2. : When wmin is greater than the product of number of the nodes except the vertex

i in the path whose weight is maximum and minimum weight of the vertex in the graph, i.e.

wmin > k1w1.

Case-2.3. : When wmin is less than the product of the number of nodes except the vertex i

in the path whose weight is maximum and minimum weight of the vertex in the graph, i.e.

wmin < k1w1.

Case-2.4. : When wmax is equal to the product of the number of nodes except the vertex i

in the path whose weight is minimum and maximum weight of the vertex in the graph, i.e.

wmax = k2w2.

Case-2.5. : When wmax is greater than the product of number of the nodes except the vertex

i in the path whose weight is minimum and maximum weight of the vertex in the graph, i.e.

wmax > k2w2.

Case-2.6. : When wmax is less than the product of the number of nodes except the vertex i

in the path whose weight is minimum and maximum weight of the vertex in the graph, i.e.
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wmax < k2w2.

Under above conditions we modify the tree TCIR with the help of following non-linear

semi-infinite (or nonlinear) optimization model:

Minimize
∑

v∈V (TCIR)

{c+(w(v))x(w(v)) + c−(w(v))y(w(v))}

subject to

maxv∈V (TCIR) dw(v, i) ≤ maxv∈V (TCIR) dw(v, p),∀p ∈ TCIR(or p ∈ V (TCIR)),

w(v) = w(v) + x{w(v)} − y{w(v)}, ∀v ∈ V (TCIR),

x{w(v)} ≤ w+{w(v)}, ∀v ∈ V (TCIR),

y{w(v)} ≤ w−{w(v)}, ∀v ∈ V (TCIR),

x{w(v)}, y{w(v)} ≥ 0, ∀v ∈ V (TCIR),

where w(v) be the modified vertex weight, w+{w(v)} = wupp(v)− w(v) and w−{w(v)} =

w(v) − wlow(v) are the maximum feasible amounts by which w(v) can be increased and re-

duced consecutively, i.e. wlow(v) ≤ w(v) ≤ wupp(v), x{w(v)} and y{w(v)} are the maximum

amounts by which the vertex weight w(v) is increased and reduced consecutively, c+(w(v)) is

the non negative cost if w(v) is increased by one unit and c−(w(v)) is the non negative cost if

w(v) is reduced by one unit. Each feasible solution (x, y) with x = {x(w(v)) : v ∈ V (TCIR)}

and y = {y(w(v)) : e ∈ V (TCIR)}, is called a feasible modification of the Inv1c location

problem.

Now, we prove the results follows below.

Lemma 4.4.3 If wmin = k1w1 in TCIR, then w∗(Li) = w∗(Ri) by reducing the weights of

all vertices except the vertex i, i.e. root i up to minimum weight maintaining the bounding

condition in the path whose weight is maximum and i is the Inv1C.

Proof. If k1 be the number of nodes in the maximum weighted path Li or Ri and w1 be

the minimum weight of vertex among the nodes in TCIR as well as Li or Ri, then there is

a scope to reduce weight of each vertex up to w1. As k1 vertices is there in the path Li or

Ri, so we can reduces at least k1w1 weight and hence reduced weight of the path Li or Ri

becomes k1w1. Again we have wmin = k1w1. By this way we can balance the weights of both

paths. So we get the modified tree of the tree TCIR, say T ′CIR. Again, since the CirG is an

arbitrary, so our assumption is true for any CirGs.
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Finally in T ′CIR, we have w∗(Li) = w∗(Ri), which implies that i is the Inv1C of the given

weighted CirG. Hence the result. �

Lemma 4.4.4 If wmin > k1w1 in TCIR, then w∗(Li) = w∗(Ri) by reducing the weights of

some vertices except the root i maintaining the bounding condition in the path whose weight

is maximum and i is the Inv1C.

Proof. Since we can decrease the weight of each vertex except the root up to minimum

weight of the vertex in TCIR, so we can reduce the weight in the path whose weight is

maximum in such a way that its least weight of the path becomes k1w1. Again we have

wmin > k1w1. Therefore we can decrease the weights (wmax − wmin) from the vertices

except the root i in the path whose weight is maximum using the non-linear semi-infinite (or

nonlinear) optimization model technique. By this way we can balance the weights of both

paths. So we get the modified tree of the tree TCIR, say T ′CIR. Again, since the CirG is an

arbitrary, so our assumption is true for any CirGs.

Finally in T ′CIR, we have w∗(Li) = w∗(Ri), which implies that i is the Inv1C of the given

weighted CirG. Hence the result. �

Lemma 4.4.5 If wmin < k1w1 in TCIR, then w∗(Li) = w∗(Ri) by reducing the weights of

all vertices up to minimum weight except the root i maintaining the bounding condition in

the path whose weight is maximum and enhance the weights of some vertices except the root

i in the path whose weight is minimum and i is the Inv1C.

Proof. Since we can decrease the weight of each node up to minimum weight of the node in

TCIR, so we can reduce the weights of the vertices except the root in the path whose weight

is maximum in such a way that its least weight of the path becomes k1w1. Again we have

wmin < k1w1. Therefore we can increase the weights (k1w1−wmin) to the vertices except the

root in the path whose weight is minimum using the non-linear semi-infinite (or nonlinear)

optimization model technique. By this way we can balance the weights of both paths. So

we get the modified tree of the tree TCIR, say T ′CIR. Again, since the CirG is an arbitrary,

so our assumption is true for any CirGs.

Finally in T ′CIR, we have w∗(Li) = w∗(Ri), which implies that i is the Inv1C of the given

weighted CirG. Hence the result. �

Lemma 4.4.6 If wmax = k2w2 in TCIR, then w∗(Li) = w∗(Ri) by enhance the weights of

all vertices up to maximum weight except the root i maintaining the bounding condition in

the path whose weight is minimum and i is the Inv1C.
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Proof. If k2 be the number of nodes in the minimum weighted path Li or Ri and w2 be the

maximum weight of the vertex among the vertices in TCIR as well as Li or Ri, then there is

a scope to increase the weight of each vertex up to w2. As k2 vertices is there in the path Li

or Ri, so we can enhance at most k2w2 weight and hence enhanced weight of the path Li or

Ri becomes k2w2. Again we have wmax = k2w2. By this way we can balance the weights of

both paths. So we get the modified tree of the tree TCIR, say T ′CIR. Again, since the CirG

is an arbitrary, so our assumption is true for any CirGs.

Finally in T ′CIR, we have w∗(Li) = w∗(Ri), which implies that i is the Inv1C of the given

weighted CirG. Hence the result. �

Lemma 4.4.7 If wmax > k2w2 in TCIR, then w∗(Li) = w∗(Ri) by enhance the weights of

all vertices up to maximum weight except the root i maintaining the bounding condition in

path whose weight is minimum and reducing the weights of some vertices except the root i in

the path whose weight is maximum and i is the Inv1C.

Since we can increase the weight of each node up to maximum weight of the node in TCIR,

so we can enhance the weights of all vertices except the root i in the path whose weight

is minimum in such a way that its greatest weight of the path becomes k2w2. Again we

have wmax > k2w2. Therefore we can reduces the weights (wmax − k2w2) to some vertices

except the root in the path whose weight is maximum using the non-linear semi-infinite (or

nonlinear) optimization model technique. By this way we can balance the weights of both

paths. So we get the modified tree of the tree TCIR, say T ′CIR. Again, since the CirG is an

arbitrary, so our assumption is true for any CirGs.

Finally in T ′CIR, we have w∗(Li) = w∗(Ri), which implies that i is the Inv1C of the given

weighted CirG. Hence the result. �

Lemma 4.4.8 If wmax < k2w2 in TCIR, then w∗(Li) = w∗(Ri) by enhance the weights of

some vertices except the root i maintaining the bounding condition in the path whose weight

is minimum and i is the Inv1C.

Proof. Since we can increase the weight of each node up to maximum weight of the node

in TCIR, so we can enhance the weights of the vertices except the root i in the path whose

weight is minimum in such a way that its greatest weight of the path becomes k2w2. Again

we have wmax < k2w2. Therefore we can increase the weights (wmax−wmin) to some vertices

except the root i in the path whose weight is minimum using the non-linear semi-infinite (or

nonlinear) optimization model technique. By this way we can balance the weights of both
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paths. So we get the modified tree of the tree TCIR, say T ′CIR. Again, since the CirG is an

arbitrary, so our assumption is true for any CirGs.

Finally in T ′CIR, we have w∗(Li) = w∗(Ri), which implies that i is the Inv1C of the given

weighted CirG. Hence the result. �

4.4.2 Algorithm and its complexity

Here, we have proposed a combinatorial algorithm for the Inv1c location problem on the

vertex weighted tree TCIR. The main concept of the proposed algorithm is as follows:

Let TCIR be a weighted tree corresponding to the CirG G with (n−1) edges and n vertices.

Let V be the set of the vertices and E be the set of the edges. Let i be any non-pendant

specified vertex in the tree TCIR which is to be Inv1C. At first we calculate the path whose

weight is maximum from i to any pendant vertex of TCIR. Let R and L be the right and

left paths from i in which weights are maximum with respect to sides. Let w(Li), w(Ri)

be the sum of the weights of vertices except the root of the paths Li, Ri respectively with

respect to the vertex i. If w(Li) = w(Ri), then i is the center as well as the Inv1C of

the graph. If w(Li) 6= w(Ri), then six cases may arise. In the first case, if wmin = k1w1

in TCIR, where w1 = min{w(v), v ∈ G}, wmin = min{w(Li), w(Ri)}, k1 be the number

of vertices in such path between Li, Ri whose weight is maximum, except the root i and

wmin > 0, then w∗(Li) = w∗(Ri) by reducing the weights of all vertices up to minimum

weight except the vertex i, i.e.,root i maintaining the bounding condition in the path whose

weight is maximum and i is the Inv1C. In the second case, if wmin > k1w1 in TCIR, where

w1 = min{w(v), v ∈ G}, wmin = min{w(Li), w(Ri)}, k1 be the number of vertices in such

path between Li, Ri whose weight is maximum, except the root i and wmin > 0, then

w∗(Li) = w∗(Ri) by reducing the weights of some vertices except the root i maintaining the

bounding condition in the path whose weight is maximum and i is the Inv1C. In third case,

if wmin < k1w1 in TCIR, where w1 = min{w(v), v ∈ G}, wmin = min{w(Li), w(Ri)}, k1

be the number of vertices in such path between Li, Ri whose weight is maximum, except

the root i and wmin > 0, then w∗(Li) = w∗(Ri) by reducing the weights of all vertices

up to minimum weight except the root i maintaining the bounding condition in the path

whose weight is maximum and enhance the weights of some vertices except the root i in the

path whose weight is minimum and i is the Inv1C. In fourth case, if wmax = k2w2 in TCIR,

where w2 = max{w(v), v ∈ G}, wmax = max{w(Li), w(Ri)}, k2 be the number of vertices

in such path between Li, Ri whose weight is minimum, except the root i and wmax > 0,

then w∗(Li) = w∗(Ri) by enhance the weights of all vertices up to maximum weight except
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the root i maintaining the bounding condition in the path whose weight is minimum and

i is the Inv1C. In fifth case, if wmax > k2w2 in TCIR, where w2 = max{w(v), v ∈ G},

wmax = max{w(Li), w(Ri)}, k2 be the number of vertices in such path between Li, Ri

whose weight is minimum, except the root i and wmax > 0, then w∗(Li) = w∗(Ri) by

enhance the weights of all vertices up to maximum weight except the root i maintaining

the bounding condition in path whose weight is minimum and reducing the weights of some

vertices except the root i in the path whose weight is maximum and i is the Inv1C. In sixth

case, if wmax < k2w2 in TCIR, where w2 = max{w(v), v ∈ G}, wmax = max{w(Li), w(Ri)},

k2 be the number of vertices in such path between Li, Ri whose weight is minimum, except

the root i and wmax > 0, then w∗(Li) = w∗(Ri) by enhance the weights of some vertices

except the root i maintaining the bounding condition in the path whose weight is minimum

and i is the Inv1C.

Our proposed algorithm to the Inv1c location problem of the tree corresponding to the

CirG G is as follows:

Algorithm 1-INV-CIR-ARC-TREE

Input: Weighted CirG G with arcs Ci, i = 1, 2, . . . , n, with endpoints (hi, ti) and wj to the

each vertex j, (j = 1, 2 . . . , n) are the weights of the arcs Ci.

Output: Vertex i as Inv1C of the tree TCIR and modified tree T ′CIR.

Step 1. Construction of the tree TCIR with root i //Algorithm CIR-TREE//.

Step 2. Compute the longest paths Ri and Li from i to the tree TCIR.

Step 3. Calculate w(Li) and w(Ri).

Step 4. //Modification of the tee TCIR//

Step 4.1. If w(Li) = w(Ri), then i is the vertex one center as well as Inv1C

of TCIR.

Step 4.2. If w(Li) 6= w(Ri), then

Step 4.2.1. If wmin = k1w1 in TCIR, then w∗(Li) = w∗(Ri) by reducing the

weights of all vertices except the vertex i, i.e.,root i up to minimum weight

maintaining the bounding condition in the path whose weight is

maximum, then go to Step 4.3.

Step 4.2.2. If wmin > k1w1 in TCIR, then w∗(Li) = w∗(Ri) by reducing the

weights of some vertices except the root i maintaining the bounding condition

in the path whose weight is maximum, then go to Step 4.3.

Step 4.2.3. If wmin < k1w1 in TCIR, then w∗(Li) = w∗(Ri) by reducing the

weights of all vertices except the root i up to minimum weight maintaining
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the bounding condition in the path whose weight is maximum and

enhance the weights of some vertices except the root i in the path whose

weight is minimum, then go to Step 4.3.

Step 4.2.4. If wmax = k2w2 in TCIR, then w∗(Li) = w∗(Ri) by enhance the

weights of all vertices except the root i up to maximum weight maintaining

the bounding condition in the path whose weight is minimum,

then go to Step 4.3.

Step 4.2.5. If wmax > k2w2 in TCIR, then w∗(Li) = w∗(Ri) by enhance the

weights of all vertices except the root i up to maximum weight maintaining

the bounding condition in path whose weight is minimum and reducing

the weights of some vertices except the root i in the path whose weight is

maximum, then go to Step 4.3.

Step 4.2.6. If wmax < k2w2 in TCIR, then w∗(Li) = w∗(Ri) by enhance the

weights of some vertices except the root i maintaining the bounding condition

in the path whose weight is minimum, then go to Step 4.3.

Step 4.3. Modified tree T ′CIR of the tree TCIR with

w∗(Li) = w∗(Ri), and i is the Inv1C.

end 1-INV-CIR-ARC-TREE.

Using above Algorithm 1-INV-CIR-ARC-TREE we can find out the Inv1c location

problem on any vertex weighted tree. Justification of this statement follows the following

illustration.

Illustration of the Algorithm 1-INV-CIR-ARC-TREE to the tree TCIR in Fig-

ure 4.8 : Let i = 1 be the pre-specified vertex of the tree TCIR which is to be Inv1C.

Next we find the longer left path Li from the node 1 to other node 15, i.e. the path

1 → 21 → 18 → 16 → 15 and find longest right path Ri from 1 to the vertex 13 does not

contain any vertex of the path Li except 1, i.e. the path 1→ 3→ 6→ 9→ 11→ 13. Next

calculate the weights of the paths Li and Ri. Let w(Li) and w(Ri) are the sum of weights

of nodes except the root i = 1 of the paths Li and Ri respectively. Here w(Li) = 30 and

w(Ri) = 27. Therefore wmin = w(Ri) = 27 and wmax = w(Li) = 30. Again k1 = 4 and

w1 = 2, then k1w1 = 8. Therefore wmin > k1w1. Next calculate (wmax − wmin). Therefore

(wmax −wmin) = (30− 27) = 3. Therefore we can decrease the weights (wmax −wmin) from

the vertices except the root i in the path whose weight is maximum using the non-linear

semi-infinite (or nonlinear) optimization model technique. Now we subtract the weight 3

from the weight of the vertex 21 in Li, then we get w∗(Li) = {(8 − 3) + 9 + 7 + 6} = 27.
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Figure 4.9: Modified tree T ′CIR of the tree TCIR.

Again w∗(Ri) = wmin = w(Ri) = 27, hence we get w∗(Li) = w∗(Ri). Therefore the vertex 1

is the Inv1C.

Now we have the modified tree T ′CIR (Figure 4.9) with modified vertex weight.

Next we shall prove the following important result.

Lemma 4.4.9 The Algorithm 1-INV-CIR-ARC-TREE correctly computes the Inv1C

of the weighted CirG.

Proof. Let i be the pre-specified vertex in TCIR. We have to prove that i is the Inv1C. At

first, by Step 1, we have constructed the tree TCIR (as per Subsection 4.4.1) with root i, by

Step 2, compute the longest paths Ri and Li from i to the tree TCIR, by Step 3, calculate

the weight of the paths Li and Ri from i except i, i.e. w(Li) and w(Ri). In Step 4, If

w(Li) = w(Ri), then i is the vertex one center as well as Inv1C of TCIR (Step 4.1). But if

w(Li) 6= w(Ri), then modify the tree TCIR under the conditions of non-linear semi-infinite

(or nonlinear) optimization model (Step 4.2). By Step 4.3, modify the tree TCIR we get the

weights w∗(Li) and w∗(Ri) of both sides of i and we get w∗(Li) = w∗(Ri). Therefore i is

the Inv1C. Hence Algorithm 1-INV-CIR-ARC-TREE correctly computes the Inv1C for

any weighted tree. �

We have another important observation in the tree T ′CIR given by the Algorithm 1-

INV-CIR-ARC-TREE.
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Lemma 4.4.10 The specified vertex i in the modified tree T ′CIR is the Inv1C.

Proof. By Algorithm 1-INV-CIR-ARC-TREE, finally we get w∗(Li) = w∗(Ri) in the

modified tree T ′CIR. Therefore the specified vertex i in modified tree T ′CIR is the Inv1C. �

The following theorem describe the total T-complexity of the algorithm to compute Inv1c

problem on weighted tree corresponding to the weighted CirG G.

Theorem 4.4.2 The T-complexity to find Inv1C problem on a given weighted tree T ′CIR

corresponding to the weighted CirG G is O(n), where n is number of vertices of the graph.

Proof. O(n) time is needed to compute Step 1 , since the adjacency relation of CirG can be

tested in O(1) time. Step 2, i.e. longest weighted path from i to vi can be computed in O(n)

time if TCIR is traversed in a Depth-First-Search(DFS) manner. Step 3 takes O(n) time to

compute the sum of the weights of the paths. Also, Step 4.1 takes O(1) time. Computation

of k1 and k2, i.e. number of vertices in Ri and Li needs O(n) time, so each Step 4.2 takes

O(n) time (since comparison of two numbers and distribution of the excess weight takes O(n)

time, so, each Step 4.2.1 to 4.2.6 can compute in O(n) time). The modification of weights

in either Ri or Li just takes O(n) time as TCIR contains (n − 1) edges and n vertices, so,

Step 4.3 can be executed in O(n) time. Hence, the overall T-complexity of our proposed

Algorithm 1-INV-CIR-ARC-TREE is O(n) time, where n is number of vertices of the

CirG. �

4.5 Summary

In this chapter, we proposed an efficient algorithm for computing a MADT on CirGs which

is designed based on BFS technique. The T-complexity of this algorithm is of O(n2), where

n is number of vertices of the CirG. According to our knowledge, the complexity is not

optimal, so one can try to improve this algorithm as extensive research work for optimal

algorithm. Also, we investigated the Inv1c location problem with weights of the vertex on

the tree corresponding to the weighted CirG G. We developed exact combinatorial solution

algorithm for the tree with fast running time O(n), where n is number of vertices of the

weighted CirG.


