
Chapter 3

Computation of inverse 1-center

location problem and minimum

average distance tree on interval

graphs ∗

3.1 Introduction

Suppose G = (V,E) be an UndG. Now, G is known to be a InvG, if we create each node

of V for each interval in the set of intervals I defined on real line so that (x, y) ∈ E iff the

intervals associated to the nodes x and y have common intersection. We use the symbol I

to represent an IR of G and G to represent an IntG of I [50]. Let I = {j1, j2, . . . , jn}, where

jz = [az, bz] for 1 ≤ z ≤ n, be the IR of the graph G, where az represents the left extremity

and bz is the right extremity of the interval iz. Without loosing the generality, we presume

the following notations [50]:

(i) each interval has both its extremities and two or more intervals do not have a same

extremely,

(ii) intervals in IR and nodes in InvG are same,

(iii) our assumed InvG is connected & the array of arranged extremeties/endpoints is pro-

vided and

∗A part of the work presented in this chapter is published in Int. J. Computing Science and Mathematics,

8 (2017) 533-541.

31

32Chapter 3. Inverse 1-center location problem and MADT on interval graphs

(iv) the intervals in I are numbered according to the ascending/growing right extremities.

If two or more intervals contain same extremities we apply the Algorithm CONVERT [82]

to convert the given intervals into the intervals with different extremities.

Here we take the weighted InvG, i.e. for each interval j, we assign a positive weight wj > 0.

An InvG and its IR are shown in Figure 3.1 and Figure 3.2 respectively.

Many researchers studied InvG and they used this graph as the mathematical model to

solve several real life problems. A brief discussion about InvG was found in [50]. To the

best of our knowledge InvG and its different subclass have lots of applications in archeology,

protein sequencing [56], works scheduling [18], macro substitution [39], VLSI design, file

arrangements [18], psychology, transportation, routing between two points nets [52], circuit

routine [57, 79], genetics, molecular biology, sociology, circuit routing etc.

For a graph G, a walk can be defined as a finite alternating series of vertices and edges

which is beginning and ending with vertices such that each edge is incident with those vertices

which are preceding and following it. In a walk,there will be no edge which appears more

than once. However, a vertex can appear more than once. A path can be defined as an

open walk in which there will be no vertex appearing more than once. A circuit can be

defined as a closed walk in which there will be no vertex (except the initial vertex and the

final vertex) appearing more than once. A tree T is a graph which is connected, containing

no circuits. i.e. a tree T is a connected acyclic graph. Clearly there will be one and only

one path between each and every pair of vertices of tree T. For an w-tree, there will be a

non-negative real number attached with each edge of the tree. For an un-w-tree T (V1, E1),

where |E1| = |V1| − 1, the eccentricity e(x) of a vertex x can be defined as the distance from

x to the vertex which is farthest from x ∈ T , i.e.

e(x) = max {d(x, xi), for all xi ∈ T},

where the number of the edges on the shortest path between x and xi is d(x, xi).

For a w-tree T (V,E), the eccentricity e(x) of the vertex x can be defined as the sum of

the weights of the edges from x to the vertex which is farthest from x ∈ T , i.e.

e(x) = max {dw(x, xi), for all xi ∈ T},

where the sum of the weights of the edges on the path between x and xi is dw(x, xi).

A center of a tree T can be defined by a vertex with minimum eccentricity i.e. if e(s) =

min{e(x), for all x ∈ V }, then s is called 1-center. We know very well that every tree is

either monocentric or bicentric.

3.2. Organization of the chapter 33

In a tree T , the eccentricity e(x) of a center can be defined as the radius of the tree T

which is denoted by ρ(T), i.e.

ρ(T) = {minx∈T e(x)}.

For a tree T , the diameter can be defined as the length of the longest path that implies,

the diameter is the maximum eccentricity.

For the w-tree T with n vertices and n − 1 edges of the corresponding weighted InvG,

the Inv1C problem on weighted tree T is concerned with modifying parameter, like vertex

weight, at minimum total cost within certain modification bounds such that a pre-specified

vertex becomes the 1-center. For example, consider the train station of a city which can not

be relocated. The mayor could change some parameters in the urban system (e.g., improving

streets or urban transportation lines) at minimum cost subject to evident length constraints

such that the current location of the train station becomes the center (in a graph theoretic

sense) of the city.

The average distance µ(G) of a graph G = (V,E) is the average over all unordered pairs

of vertices of the distances,

µ(G) =
2

n(n− 1)

∑
u,v∈V (G)

dG(u, v)

The MADST of the fuzzy InvG G is a spanning tree of G with minimum average distance.

In this chapter, we propose an algorithm to compute

(i) Inv1C location problem on weighted InvG in O(n) time, where n is the number of vertices

of the weighted InvG, and

(ii) the minimum average distance tree on the fuzzy InvG with O(n2) time, where n is the

number of vertices of the fuzzy InvG.

3.2 Organization of the chapter

In the next section, i.e. Section 3.3, we discuss the Inv1C. In Subsection 3.3.1 present the

data structure and construction of the tree TIG. Some notations have also presented in this

subsection. In Subsection 3.3.2, we present an algorithm to get Inv1C of the modified vertex

weighted interval tree corresponding to the InvG G. The T-complexity is also calculated

in this subsection. In Section 3.4, we discuss about MADT on fuzzy InvG and Subsection

3.4.1 presents the definition, basic operations on interval number. In Subsection 3.4.2, we

present the data structure and construction of the tree. Also this subsection presents the

spanning tree and MdsT and in Subsection 3.4.3, we develop modified spanning tree of the

34Chapter 3. Inverse 1-center location problem and MADT on interval graphs

v v v

v v v

v

v

v

v
v v v

v

v
c
c
cc

1(3) 3(2) 6(3) 9(4) 12(2) 15(2)

2(8) 4(9) 7(3) 10(3) 13(4)

8(4) 11(5)

14(3)

5(4)

Figure 3.1: Interval graph G.

1(3)

2(8)

3(2)

4(9)

5(4)

6(3)

7(3)

8(4)
9(4)

10(3)

11(5)

12(2)

13(4)

14(3)

15(2)

Figure 3.2: Interval matching diagram of the InvG G of Figure 3.1.

tree T . Subsection 3.4.4 presents the average distance of the fuzzy InvG and Subsection

3.4.5 presents an algorithm to get MADT of the InvG. The T-complexity is also calculated

in this subsection. Section 3.5 presents the summary.

3.3 Inverse 1-center location problem on interval graphs

3.3.1 Data structure and construction of the tree

Let G = (V,E), V = {1, 2, . . . , n}, |V | = n, |E| = m be a connected InvG where the nodes

are given in the sorted order of the right extremity of the interval representation of the

graph. Intervals are labeled according to increasing order of their extremities. This labeling

is referred to as IG ordering. Let (x, y) or (y, x) denote the existence of an adjacency relation

between two vertices x, y. It is assumed that (x, x) is always true, i.e. (x, x) ∈ E. If [ax, bx]

and [ay, by] are two extremities of the nodes x and y respectively then x, y are adjacent if at

least one of the following conditions hold:

(i) ay < ax < by,

(ii) ay < bx < by,

(iii) ax < ay < bx,

(iv) ax < by < bx.

So, instead of storing an InvG using adjacency matrix or adjacency list, one can store the

interval representation of the InvG using only 2n units. The adjacency relation can be tested

in O(1) time. This is a major advantage of InvG.

For each vertex v ∈ V , let H(v) be the highest number vertex adjacent to v. If there is

no vertex adjacent to v or if the adjacent vertex is not greater than v, then H(v) = v, i.e.

3.3. Inverse 1-center location problem on interval graphs 35

H(v) = max{u : (u, v) ∈ E, u ≥ v}.

We define, N(i) = the open neighbourhood of i = {v : (v, i) ∈ E},

k = max{bk : (k, i) ∈ E},

j′ = min{aj′ : (j′, i) ∈ E},

j = max{bj : (j, i) ∈ E, j 6= k},

k′ = min{ak′ : (k′, i) ∈ E, k′ 6= j′}.

Let i be pre-specified vertex which to be Inv1C. Our target is to form a spanning tree

corresponding to the weighted InvG with two branches. Let the vertex i be the root of the

tree. Then we find all adjacent vertices to i and set them as child (leaves) of i. To form the

spanning trees we have the following two cases:

Cases I: If number of adjacent of i is one, i.e. deg(i) = 1, then we can not construct a tree

with root i and two branches. Therefore, vertex i is not Inv1C of the weighted IT.

Case II: If number of adjacent vertices to the vertex i are more than one, i.e. deg(i) > 1,

then three possibilities arises and we try to form a tree with two longest branches.

(a) When i is the starting vertex in G, i.e. i = 1:

In this case we find all adjacent vertices to the vertex 1 and set them as child (leaves)

of 1 and marked them. Next we consider the vertices k and j whose right end points

of the corresponding intervals are maximum and next maximum respectively. Next find

all unmarked adjacent vertices to the vertices k and j respectively. If there is no common

adjacent vertices to k and j, then find m1, interval whose right end point is maximum among

all adjacent to k and all unmarked adjacent are placed as the child of k and marked them else

m′1 as child of j and marked, where m′1 = max{bm′1 : m′1 ∈ N(k)∩N(j)} and all members of

{N(k)∪N(j)−{m′1}} as child of k and marked and find m′′1 = max{N(k)∪N(j)−{m′1}}.

This process is continued until all intervals right to 1 are marked.

(b) When i is the end vertex in G, i.e. i = n:

In this case we find all adjacent vertices to the vertex n and set them as child (leaves) of

n and marked them. Next we consider the vertices j′ and k′ whose left end points of the

corresponding intervals are minimum and next minimum respectively. Next find all unmarked

adjacent vertices to the vertices j′ and k′ respectively. If there is no common adjacent vertices

to j′ and k′, then find m1, interval whose left end point is minimum among all adjacent to

j′ and unmarked adjacent are placed as the child of j′ and marked them else m′1 as child of

k′, where m′1 = min{am′1 : m′1 ∈ N(k′)∩N(j′)} and all members of {N(k′)∪N(j′)−{m′1}}

as child of j′ and marked and find m′′1 = min{am′′1 : m′′1 ∈ {N(k′) ∪ N(j′) − {m′1}}}. This

process is continued until all intervals left to n are marked.

36Chapter 3. Inverse 1-center location problem and MADT on interval graphs

(c) When i is the vertex between 1 and n, i.e. 1 < i < n:

In this case we find all adjacent vertices to the vertex i and set them as child (leaves) of i

and marked them. Next, we consider the vertex k whose right end point of the corresponding

interval among all adjacent vertices to i is maximum. Corresponding to the vertex k we find

all unmarked vertices adjacent to k and put them as the child of k. Continuing this process

on the right side of the interval diagram until all vertices corresponding to the intervals right

of i are marked. Similarly, on the left side of i, we find j′, the unmarked adjacent to i,

and put them as child in left branch. Then same procedure is applied on left side until all

intervals left of i are marked.

Now we propose a combinatorial algorithm to construct the tree TIG. Our proposed

algorithm is given below:

Algorithm INT-TREE

Input: Weighted InvG G having interval representation I = [i1, i2, . . . , in], ij = [aj , bj] and

weight wj , j = 1, 2, . . . , n.

Output: The rooted tree TIG with two branches of the InvG G.

Step 1. Set root = i and compute N(i) = the open neighbourhood of

i = {v : (v, i) ∈ E}.

Step 2. If |N(i)| = 1, then end.

If |N(i)| > 1 and i is starting interval, i.e. i = 1, then goto Step 3.

If |N(i)| > 1 and i is the end interval, i.e. i = n, then goto Step 4.

If |N(i)| > 1 and i is an interval between 1 and n, i.e. 1 < i < n, then

goto Step 5.

Step 3. Set N(i) as the child of the root i and marked them.

Step 3.1. Set k = max{bk : (k, i) ∈ E},

j = max{bj : (j, i) ∈ E, k 6= j and bj < bk}.

Step 3.2. Find unmarked adjacent of j and k and if N(j)
⋂
N(k) = φ,

then m1 = max{bm1 : (m1, k) ∈ E,m1 ∈ N(k)} and set all

unmarked N(k) as the child of k and marked them.

else m′1 = max{bm′1 : m′1 ∈ N(k) ∩N(j)} set as child of j and

{N(k) ∪N(j)− {m′1}} as child of k and marked and find

m′′1 = max{N(k) ∪N(j)− {m′1}}.

Step 3.3. This procedure is running till all intervals are traced.

Step 3.4. Compute the interval tree TIG.

Step 4. Set N(i) as the child of the root i and marked them.

3.3. Inverse 1-center location problem on interval graphs 37

Step 4.1. Set j′ = min{aj′ : (j′, i) ∈ E},

k′ = min{ak′ : (k′, i) ∈ E, k′ 6= j′ and a′j < a′k}.

Step 4.2. Find unmarked adjacent of j′ and k′ and if

N(j′)
⋂
N(k′) = φ, then m1 = min{am1 : (m1, j

′) ∈ E,m1 ∈ N(j′)}

and set all unmarked N(j′) as the child of j′ and marked them.

else m′1 = min{am′1 : m′1 ∈ N(k′) ∩N(j′)} set as child of k′

and {N(k′) ∪N(j′)− {m′1}} as child of j′ and marked and find

m′′1 = min{am′′1 : m′′1 ∈ {N(k′) ∪N(j′)− {m′1}}}.

Step 4.3. This procedure is running till all intervals are traced.

Step 4.4. Compute the interval tree TIG.

Step 5. Set N(i) as the child of the root i and marked them.

Step 5.1. Set p = max{bp : (p, i) ∈ E}, q = min{aq : (q, i) ∈ E}

and p 6= q.

Step 5.2. Set p′ = max{bp′ : (p′, p) ∈ E, p′ ∈ N(p)} and set all

unmarked N(p) as the child of p and marked.

Step 5.3. Set q′ = min{aq′ : (q′, q) ∈ E, q′ ∈ N(q)} and set all

unmarked N(q) as the child of q and marked.

Step 5.4. This procedure is running till all intervals are traced.

Step 5.5. Compute the interval tree TIG.

Step 6. Put weight wj to the vertex j in TIG corresponding to the interval j of the InvG G.

end INT-TREE.

Illustration of the Algorithm INT-TREE : Let i = 1 be the pre-specified vertex which

is the root. Next the open neighbourhood of 1 is N(1) = {2, 3}, where the vertices of N(1)

as the child of the root 1. Next, 3 has the farthest right extremity bj of the intervals of N(1)

corresponding to the vertices of the graph G and 2 has the next maximum right extremity

of N(1) corresponding to the nodes in the graph G. Next the open neighbourhoods of 3

and 2 are N(3) = {4, 5} and N(2) = {4} respectively, where the vertices of N(3) and N(2)

as the child of the roots 3 and 2. Next 5 has the furthest right extremity of the intervals

of N(3) corresponding to the nodes of the graph G and 4 contains the least tail among the

intervals of N(2) corresponding to the vertices of the graph G. Next the open neighbourhood

of 5 is N(5) = {6, 7}, where the vertices of N(5) as the child of the root 5. Next 7 has the

farthest right extremity of the intervals of N(5) corresponding to the nodes in the graph G.

Next the open neighbourhood of 7 is N(7) = {8}, where the vertex of N(7) as the child

of the root 7. Next the open neighbourhood of 8 is N(8) = {9, 10}, where the vertices of

38Chapter 3. Inverse 1-center location problem and MADT on interval graphs

u u u u u u v u u
u u u u

1(3) 3(2) 5(4) 7(3) 8(4) 10(3) 11(5) 13(4) 15(2)

6(3) 9(4) 12(2) 14(3)

u
u

2(8)

4(9)

Figure 3.3: Tree TIG of the InvG G with longest branch on both sides by checking adjacency.

N(8) as the child of the root 8. Next 10 has the furthest right extremity of the intervals

of N(8) corresponding to the nodes of the graph G. Next the open neighbourhood of 10

is N(10) = {11}, where the vertex of N(10) as the child of the root 10. Next 11 has the

maximum right end point among the intervals of N(10) corresponding to the vertices of the

graph G. Next the open neighbourhood of 11 is N(11) = {12, 13}, where the vertices of

N(11) as the child of the root 11. Next 13 has the furthest right extremity of the intervals

of N(11) corresponding to the nodes of the graph G. Next the open neighbourhood of

13 is N(13) = {14, 15}, where the vertices of N(13) as the child of the root 13. Next 15

has the furthest right extremity of the intervals of N(13) corresponding to the nodes in

the graph G. In this way we get longest left path Li from the vertex 1 to other vertex

4, i.e. the path 1 → 2 → 4 and find longest right path Ri from 1 to the vertex 15 does

not contain any vertex of the path Li except 1, i.e. the path 1 → 3 → 5 → 7 → 8 →

10 → 11 → 13 → 15. Next put the weights 9, 8, 3, 2, 4, 3, 4, 3, 5, 4, 2, 3, 4, 2, 3 to the vertices

4, 2, 1, 3, 5, 7, 8, 10, 11, 13, 15, 6, 9, 12, 14 respectively. Finally we construct the rooted tree TIG

with root i = 1 (Figure 3.3).

We have the following important observation on TIG.

Lemma 3.3.1 The tree TIG constructed by the Algorithm INT-TREE is a spanning tree.

Proof. As per construction of the tree TIG by end points scanning approach of the intervals

we get n vertices and n− 1 edges without any circuit. Therefore the tree TIG is a spanning

tree.

Hence the result. �

Next we discuss about the execution time of the Algorithm INT-TREE.

Theorem 3.3.1 The execution time of the Algorithm INT-TREE is O(n), where n is the

cardinality of the vertex set.

Proof. Step 1 can be finished in O(n) time. Step 2 is completed in O(n) time, since number

of intervals is n. Again intersection of two finite sets of n elements (number of vertices) can

3.3. Inverse 1-center location problem on interval graphs 39

be executed in O(n) time. Thus Step 3, or Step 4, or Step 5 can be finished in O(n) time.

Finally the execution time of the Algorithm INT-TREE is O(n), where n is the cardinality

of the vertex set. Since weight of the vertex in tree TIG corresponds the weight of the interval

in InvG, so it is one - to - one corresponds, and hence Step 6 can be completed in O(n) time.

�

Thus the tree TIG of the InvG is formed. The tree TIG with root as 1 of the InvG G is

displayed in Figure 3.3. Next assign the weight.

Now, we introduce some notations for our algorithmic purpose.

Ri : Longest weighted path right to the vertex i.

Li : Longest weighted path left to the vertex i does not contain any

vertex of the path Ri.

w(Ri) : total weight of the nodes in the path Ri.

w(Li) : total weight of the nodes in the path Li.

w∗(Ri) : total weight of the nodes in the path Ri after modification.

w∗(Li) : total weight of the nodes in the path Li after modification.

wlow : min{w(Li), w(Ri)}.

whigh : max{w(Li), w(Ri)}.

k : number of vertices in such path between Li, Ri whose weight

is maximum, except the vertex i.

wlow(v) : min{w(v) : v ∈ TIG} = w′.

wupp(v) : max{w(v) : v ∈ TIG}.

TIG : weighted tree associated to the InvG G.

T ′IG : Modified tree of TIG.

To find Inv1C we discuss following two cases:

1. If w(Li) = w(Ri), then i is the center as well as the Inv1C of the graph.

2. If w(Li) 6= w(Ri), then we have following three cases :

Case-2.1. : When wlow = kw′, where w′ is the minimum weight of the vertex in the graph.

Case-2.2. : When wlow > kw′, where w′ is the minimum weight of the vertex in the graph.

Case-2.3. : When wlow < kw′, where w′ is the minimum weight of the vertex in the graph.

Under above conditions we modify the tree TIG with the help of following non-linear opti-

mization model:

Min
∑

v1∈V1(TIG)

{c+1 (w(v1))x1(w(v1)) + c−1 (w(v1))y1(w(v1))}

40Chapter 3. Inverse 1-center location problem and MADT on interval graphs

subject to

maxv1∈V1(TIG) dw(v1, i) ≤ maxv1∈V1(TIG) dw(v1, p),∀p ∈ V1(TIG),

w(v1) = w(v1) + x1{w(v1)} − y1{w(v1)} for all v1 ∈ V1(TIG),

x1{w(v1)} ≤ w+{w(v1)},∀v1 ∈ V1(TIG),

y1{w(v1)} ≤ w−{w(v1)},∀v1 ∈ V1(TIG),

x1{w(v1)}, y1{w(v1)} ≥ 0,∀v1 ∈ V1(TIG),

where w(v1) be the modified vertex weight, w+{w(v1)} = wupp(v1)−w(v1), w
−{w(v1)} =

w(v1) − wlow(v1) be the highest feasible measurements in which w(v1) can be increased

and reduced respectively, i.e. wlow(v1) ≤ w(v1) ≤ wupp(v1), x1{w(v1)} and y1{w(v1)} are

the measurements by which the vertex weight w(v1) is increased and reduced respectively,

c+1 (w(v1)) is the non negative cost if w(v1) is grown by one unit and c−1 (w(v1)) is the non

negative cost if w(v1) is reduced by one unit. Each feasible solution (x1, y1) with x1 =

{x1(w(v1)) : v1 ∈ V1(TIG)} and y1 = {y1(w(v1)) : v1 ∈ V1(TIG)} is known as feasible

modification of Inv1C location problem.

Next, we prove some results.

Lemma 3.3.2 If wlow = kw′ in TIG, then w∗(Li) = w∗(Ri) by reducing the weights of all

nodes except the node i, i.e. root i up to least weight maintaining the bounding condition in

the path whose weight is maximum and i is the Inv1C.

Proof. Since k is the number of nodes in the greatest weighted path Li or Ri and w′ is the

least weight of the node among the nodes in TIG as well as Li or Ri, then there is a scope

to reduce weight of each vertex up to w′. As k vertices is there in the path Li or Ri, so we

can reduces at least kw′ weight and hence reduced weight of the path Li or Ri becomes kw′.

Again we have wlow = kw′. By this way we can balance the weights of both paths. So we

get the modified tree of the tree TIG, say T ′IG. Again, since the InvG is an arbitrary, so our

assumption is true for any InvG.

Finally in T ′IG, we have w∗(Li) = w∗(Ri), which implies that i is the Inv1C of the given

weighted InvG. Hence the result. �

Lemma 3.3.3 If wlow > kw′ in TIG, then w∗(Li) = w∗(Ri) by reducing the weights of

some nodes except the root i maintaining the bounding condition in the path whose weight is

maximum and i is the Inv1C.

Proof. Since we can decrease the weight of each node except the root up to minimum weight

of the node in TIG, so we can reduce the weight in the path whose weight is maximum in such

3.3. Inverse 1-center location problem on interval graphs 41

a way that its least weight of the path becomes kw′. Again we have wlow > kw′. Therefore

we can decrease the weights (whigh − wlow) from the vertices except the root i in the path

whose weight is maximum using the conditions of non-linear semi-infinite optimization model

technique (Subsection 3.3.1). By this way we can balance the weights of both paths. So we

get the modified tree of the tree TIG, say T ′IG. Again, since the InvG is an arbitrary, so our

assumption is true for any InvG.

Finally in T ′IG, we have w∗(Li) = w∗(Ri), which implies that i is the Inv1C of the given

weighted InvG. Hence the result. �

Lemma 3.3.4 If wlow < kw′ in TIG, then w∗(Li) = w∗(Ri) by reducing the weights of all

vertices up to minimum weight except the root i maintaining the bounding condition in the

path whose weight is maximum and enhance the weights of some vertices except the root i in

the path whose weight is minimum and i is the Inv1C.

Proof. Since we can decrease the weight of each vertex up to minimum weight of the vertex

in TIG, so we can reduce the weights of the vertices except the root in the path whose weight

is maximum in such a way that its least weight of the path becomes kw′. Again we have

wlow < kw′. Therefore we can increase the weights (kw′ − wlow) to the vertices except the

root in the path whose weight is minimum using the conditions of non-linear semi-infinite

optimization model technique (Subsection 3.3.1). By this way we can balance the weights of

both paths. So we get the modified tree of the tree TIG, say T ′IG. Again, since the InvG is

an arbitrary, so our assumption is true for any InvG.

Finally in T ′IG, we have w∗(Li) = w∗(Ri), which implies that i is the Inv1C of the given

weighted InvG. Hence the result. �

3.3.2 Algorithm and its complexity

Suppose TIG is the weighted tree of the InvG G with n nodes and (n − 1) edges. Let V is

the node set and E be the edge set. Let i is any non-pendant specified vertex in the tree TIG

which is to be Inv1C. At first we calculate the maximum weighted path from i to any pendant

vertex of TIG. Let L and R be the left and right paths from i in which weights are maximum

with respect to sides. Let w(Li), w(Ri) be the total weights of the nodes of the paths Li,

Ri respectively with respect to the interval i. If w(Li) = w(Ri), then i is the center as well

as the Inv1C of the graph. If w(Li) 6= w(Ri), then three cases may arise. In the first case, if

wlow = kw′ in TIG, where w′ = min{w(v), v ∈ G}, wlow = min{w(Li), w(Ri)} and wlow > 0,

then w∗(Li) = w∗(Ri) by reducing the weights of all vertices up to minimum weight except

42Chapter 3. Inverse 1-center location problem and MADT on interval graphs

the vertex i, i.e.,root i maintaining the bounding conditions (Subsection 3.3.1) in the path

whose weight is maximum and i is the Inv1C. In the second case, if wlow > kw′ in TIG, where

w = min{w(v), v ∈ G}, wlow = min{w(Li), w(Ri)} and wlow > 0, then w∗(Li) = w∗(Ri) by

reducing the weights of some vertices except the root i maintaining the bounding conditions

(Subsection 3.3.1) in the path whose weight is maximum and i is the Inv1C. In third case, if

wlow < kw′ in TIG, where w = min{w(v), v ∈ G}, wlow = min{w(Li), w(Ri)} and wlow > 0,

then w∗(Li) = w∗(Ri) by reducing the weights of all vertices up to minimum weight except

the root i maintaining the bounding conditions (Subsection 3.3.1) in the path whose weight

is maximum and enhance the weights of some vertices except the root i in the path whose

weight is minimum and i is the Inv1C.

Our proposed algorithm to the Inv1C location problem of the interval tree corresponding

to the InvG G is as follows:

Algorithm 1-INV-INT-LOC-TREE

Input: Weighted InvG G with interval representation I = [i1, i2, . . . , in], ij = [aj , bj], j =

1, 2, . . . , n.

Output: Vertex i as Inv1C of the tree TIG and modified tree T ′IG.

Step 1. Construction of the tree TIG (as per Subsection 3.3.1) with root i.

Step 2. Compute the weighted path Ri from i to other vertex vj

on the tree TIG.

Step 3. Next compute weighted path Li from i to the vertex vk

does not contain any vertex of the path R except i.

Step 4. Calculate weights of two paths Li and Ri, i.e. w(Li) and w(Ri).

Step 5. //Modification of the tee TIG//

Step 5.1. If w(Li) = w(Ri), then i is the vertex one center as well as inverse

1-center of TIG.

Step 5.2. If w(Li) 6= w(Ri), then

Step 5.2.1. If wlow = kw′ in TIG, then w∗(Li) = w∗(Ri) by reducing

the weights of all vertices except the vertex i, i.e.,root i up to

minimum weight maintaining the bounding condition in the

path whose weight is maximum, then go to Step 5.3.

Step 5.2.2. If wlow > kw′ in TIG, then w∗(Li) = w∗(Ri) by reducing

the weights of some vertices except the root i maintaining the

bounding condition in the path whose weight is maximum, then

go to Step 5.3.

3.3. Inverse 1-center location problem on interval graphs 43

Step 5.2.3. If wlow < kw′ in TIG, then w∗(Li) = w∗(Ri) by reducing

the weights of all vertices except the root i up to minimum weight

maintaining the bounding condition in the path whose weight is

maximum and enhance the weights of some vertices except the root

i in the path whose weight is minimum, then go to Step 5.3.

Step 5.3. T ′IG = modified tree of the tree TIG.

end 1-INV-INT-LOC-TREE.

Using above Algorithm 1-INV-INT-LOC-TREE we can find out the Inv1C location

problem on any vertex weighted tree. Justification of this statement follows the following

illustration.

Illustration of the Algorithm to the tree TIG in Figure 3.3:

Let i = 1 be the pre-specified vertex of the tree TIG which is to be Inv1C. Next we find

the longest left path Li from the vertex 1 to other vertex 4, i.e. the path 1 → 2 → 4

and find longest right path Ri from 1 to the vertex 15 does not contain any vertex of the

path Li except 1, i.e. the path 1 → 3 → 5 → 7 → 8 → 10 → 11 → 13 → 15. Next

calculate the weights of the paths Li and Ri. Let w(Li) and w(Ri) be the total weight of

the nodes of the paths Li and Ri respectively. Here w(Li) = 20 and w(Ri) = 30. Next

calculate the difference of weights of two paths, i.e. calculate w(Ri) − w(Li). Therefore

w(Ri)−w(Li) = 30−20 = 10. To get equal weights of w(Li) and w(Ri) we subtract the weight

2 to the vertex 5, 1 to the vertex 7, 2 to the vertex 8, 1 to the vertex 10, 3 to the vertex 11, 1

to the vertex 13 (using Lemma 3.3.3). After modification we get w∗(Li) = {3 + 8 + 9} = 20

and w∗(Ri) = {3 + 2 + (4− 2) + (3− 1) + (4− 2) + (3− 1) + (5− 3) + (4− 1) + 2} = 20, i.e.

w∗(Li) = w∗(Ri). Therefore the vertex 1 is the Inv1C.

Now we have the modified tree T ′IG (Figure 3.4) with modified vertex weight.

u u u u u u v u u
u v u v

1(3) 3(2) 5(4− 2)7(3− 1)8(4− 2)10(3− 1)11(5− 3)13(4− 1)15(2)

6(3) 9(4) 12(2) 14(3)

u
u

2(8)

4(9)

Figure 3.4: Modified tree T ′IG of the tree TIG.

Next we prove the important result.

Lemma 3.3.5 The Algorithm 1-INV-INT-LOC-TREE correctly computes the Inv1C lo-

44Chapter 3. Inverse 1-center location problem and MADT on interval graphs

cation on the weighted interval tree.

Proof. Let i be the pre-specified vertex in TIG. We have to prove that i is the Inv1C. At

first, by Step 1, we have constructed the tree TIG (as per Subsection 3.3.1) with root i, by

Step 2, calculate the weight of the weighted path Ri from i to other vertex vj on the tree

TIG, by Step 3, calculate the weight of the another weighted path Li from i to the vertex

vk does not contain any vertex of the path Ri except i. In Step 4, Calculate weights of two

paths Li and Ri, i.e. w(Li) and w(Ri). If w(Li) = w(Ri), then i is the vertex one center as

well as Inv1C of TIG (Step 5.1). But if w(Li) 6= w(Ri), then modify the tree TIG with the

help of non-linear semi-infinite (or nonlinear) optimization model (Step 5.2). By Step 5.3,

modify the interval tree TIG we get the weights w∗(Li) and w∗(Ri) of both sides of i and we

get w∗(Li) = w∗(Ri). Therefore i is the Inv1C. Hence Algorithm 1-INV-INT-LOC-TREE

correctly computes the Inv1C for any vertex w-tree. �

We have another important observation in the tree T ′IG given by the Algorithm 1-INV-

INT-LOC-TREE.

Lemma 3.3.6 The specified vertex i in the modified tree T ′IG is the Inv1C.

Proof. By Algorithm 1-INV-INT-LOC-TREE, finally we get w∗(Li) = w∗(Ri) in the

modified tree T ′IG. Therefore the specified vertex i in the modified tree T ′IG is the Inv1C. �

The following describe the total T-complexity of the algorithm to compute Inv1C problem

on the weighted IT.

Theorem 3.3.2 The T-complexity to find Inv1C problem on a given vertex weighted interval

tree TIG is O(n), where n is the number of vertices of the tree.

Proof. Step 1 takes O(n) time, since the adjacency relation of InvG can be tested in O(n)

time. Step 2, i.e. longest weighted path from i to vi can be computed in O(n) time if

T is traversed in a depth-first-search manner. Similarly, Step 3 can be computed in O(n)

time. Step 4 takes O(n) time to compute the sum of the weights of the paths. Also, Step 5

takes O(n) time. Since comparing two numbers and distribution of the excess weight takes

O(n) time, so, Step 5.1, Step 5.2 and Step 5.3 can be computed O(n) time. Hence overall

T-complexity of our proposed Algorithm 1-INV-INT-LOC-TREE is O(n) time, where n

is the number of vertices of the InvG. �

In next section, we solve another interesting problem on fuzzy interval graphs which has

a lot of applications in our real life world.

3.4. MADT on fuzzy interval graph 45

3.4 MADT on fuzzy interval graph

In this section, we consider the weight as interval number of the vertices of the fuzzy InvG

corresponding to the interval representation. Here, uncertainty arises due to taking weight

as interval number instead of taking single real number weight. So, fuzzy sense occurs in the

weight.

Here we consider the fuzzy InvG which is defined in [25, 89]. Corresponding to each

interval i, we put a weight wi = [ai, bi] as interval number.

A fuzzy InvG and its interval diagram are shown in Figure 3.5 and Figure 3.6 respectively.

v v v

v v v

v

v

v

v
v v v

v

v
c
c
cc

1[2.5, 3] 3[1, 3] 6[2.5, 3] 9[3, 5] 12[1, 3] 15[1.5, 2]

2[7.5, 9] 4[8, 10] 7[3, 3.5] 10[2.5, 3] 13[3.5, 4.5] 14[2.5, 3.5]

5[3, 4.5] 8[4, 5] 11[5, 6]

Figure 3.5: An fuzzy interval graph G.

1[2.5, 3]

2[7.5, 9]

3[1, 3]

4[8, 10]

5[3, 4.5]

6[2.5, 3]

7[3, 3.5]

8[4, 5]
9[3, 5]

10[2.5, 3]

11[5, 6]

12[1, 3]

13[3.5, 4.5]

14[2.5, 3.5]

15[1.5, 2]

Figure 3.6: Interval matching diagram of the graph G of Figure 3.5.

3.4.1 Interval numbers and their arithmetic

A closed interval B = [x, y] = b ∈ R : x ≤ b ≤ y is called an InvNum. The numbers x and y

of B are the lower and upper limit respectively .

The number [b, b] is called degenerated InvNum for any real number b. Alternatively B

is represented as B =< me(B), wd(B) >, where me(B) and wd(B) are the mid-point and

half-width of B, i.e.,

me(B) = (x+ y)/2 and wd(B) = (y − x)/2

Next sub section we discuss about InvNum.

Some basic operations on interval number

The arithmetic operations are defined as follows:

(i) [p1, q1]⊕ [p2, q2] = [p1 + p2, q1 + q2],

(ii) [p1, q1]	 [p2, q2] = [p1 − q2, q1 − p2],

46Chapter 3. Inverse 1-center location problem and MADT on interval graphs

(iii) [p1, q1]� [p2, q2] = [min(p1p2, p1q2, q1p2, q1q2),max(p1p2, p1q2, q1p2, q1q2)],

(iv) λ[p, q] = [λp, λq] and [λq, λp] if λ ≥ 0 and λ < 0 respectively.

Comparison between interval numbers

It is very important to assimilate between two InvNum in interval arithmetic. Several authors

[19, 20, 35, 36, 93, 94] are proposed different order relations between two intervals.

Let P = [xl, xr] and Q = [yl, yr] be two intervals. For me(P) ≥ me(Q) and P > Q, the

AcpI is defined by A(P > Q) = (me(P)−me(Q))/(wd(Q) +wd(P)), then P is greater than

Q.

The values of the AcpI for different position of means and for different values of widths of

the intervals are as follows:

(i) A(P > Q) ≥ 1 when me(P) > me(Q) and xl ≥ yr,

(ii) 0 < A(P > Q) < 1 when me(P) > me(Q) and xl < yr,

(iii) A(P > Q) = 0 when me(P) = me(Q).

In the first case, P is greater than Q, where AcpI greater than or equal to 1. In the second

case, P is preferred over Q with different grades of satisfaction lying between 0 and 1. In

the third case, if wd(P) = wd(Q), then P and Q are the same interval. If wd(P) 6= wd(Q),

then the intervals P and Q are not superior to each other, i.e. AcpI becomes insignificant.

3.4.2 Data structure and construction of the tree

Suppose G = (V,E), |V | = n, |E| = m be a connected InvG, where the nodes are given in

the sorted order of the right extremity of the interval representation of the graph. According

to increasing order of their extremities intervals are labeled. This labeling is referred to as

IG ordering. Let (x, y) or (y, x) denote the existence of an adjacency relation among two

nodes x, y. It is assumed that (x, x) is always true, i.e. (x, x) ∈ E. If [ax, bx] and [ay, by] are

two end points of the nodes x and y respectively then x, y are adjacent if at least one of the

following restrictions hold:

(i) ay < ax < by,

(ii) ay < bx < by,

(iii) ax < ay < bx,

(iv) ax < by < bx.

So, instead of storing an InvG using adjacency matrix or adjacency list, one can store the

IR of the InvG using only 2n units. The adjacency relation can be tested in O(1) time. This

is a major advantage of InvG.

3.4. MADT on fuzzy interval graph 47

For every node x ∈ V , let H(x) be the greatest number node adjacent to x. If there is

no node adjacent to x or if the adjacent node is not greater than x, then H(x) = x, i.e.

H(x) = max{y : (y, x) ∈ E, y ≥ x}.

We define, N(i) = open neighbourhood of i = {x : (x, i) ∈ E},

k = max{bk : (k, i) ∈ E},

j′ = min{aj′ : (j′, i) ∈ E},

j = max{bj : (j, i) ∈ E, j 6= k},

k′ = min{ak′ : (k′, i) ∈ E, k′ 6= j′}.

Our target is to form a spanning tree corresponding to the fuzzy InvG with two branches.

Let the vertex i be the root of the tree. Then we find all adjacent vertices to i and set them

as child (leaves) of i. To form the spanning trees we have the following two cases:

Cases I: If number of adjacent of i is one, i.e. deg(i) = 1, then we can not construct a tree

with root i and two branches.

Case II: If number of adjacent vertices to the vertex i are more than one, i.e. deg(i) > 1,

then three possibilities arises and we try to form a tree with two longest branches.

(a) When i is the starting node in G, i.e. i = 1:

In this case we find all adjacent vertices to the vertex 1 and set them as child (leaves)

of 1 and marked them. Next we consider the vertices k and j whose right end points

of the corresponding intervals are maximum and next maximum respectively. Next find

all unmarked adjacent vertices to the vertices k and j respectively. If there is no common

adjacent vertices to k and j, then find m1, interval whose right end point is maximum among

all adjacent to k and all unmarked adjacent are placed as the child of k and marked them else

m′1 as child of j and marked, where m′1 = max{bm′1 : m′1 ∈ N(k)∩N(j)} and all members of

{N(k)∪N(j)−{m′1}} as child of k and marked and find m′′1 = max{N(k)∪N(j)−{m′1}}.

This process is continued until all intervals right to 1 are marked.

(b) When i is the end node in G, i.e. i = n:

In this case we find all adjacent vertices to the vertex n and set them as child (leaves) of

n and marked them. Next we consider the vertices j′ and k′ whose left end points of the

corresponding intervals are minimum and next minimum respectively. Next find all unmarked

adjacent vertices to the vertices j′ and k′ respectively. If there is no common adjacent vertices

to j′ and k′, then find m1, interval whose left end point is minimum among all adjacent to

j′ and unmarked adjacent are placed as the child of j′ and marked them else m′1 as child of

k′, where m′1 = min{am′1 : m′1 ∈ N(k′)∩N(j′)} and all members of {N(k′)∪N(j′)−{m′1}}

48Chapter 3. Inverse 1-center location problem and MADT on interval graphs

as child of j′ and marked and find m′′1 = min{am′′1 : m′′1 ∈ {N(k′) ∪ N(j′) − {m′1}}}. This

process is continued until all intervals left to n are marked.

(c) When i is the node between 1 and n, i.e. 1 < i < n:

In this case we find all adjacent vertices to the vertex i and set them as child (leaves) of i

and marked them. Next, we consider the vertex k whose right end point of the corresponding

interval among all adjacent vertices to i is maximum. Corresponding to the vertex k we find

all unmarked vertices adjacent to k and put them as the child of k. Continuing this process

on the right side of the interval diagram until all vertices corresponding to the intervals right

of i are marked. Similarly, on the left side of i, we find j′, the unmarked adjacent to i,

and put them as child in left branch. Then same procedure is applied on left side until all

intervals left of i are marked.

Now, we propose a combinatorial algorithm to construct the tree TIG. Our proposed

algorithm is as follows:

Algorithm INT-TREE

Input: Fuzzy InvG G with interval representation I = [i1, i2, . . . , in], ij = [aj , bj] and weight

wj = [aj , bj], j = 1, 2, . . . , n as interval number.

Output: The rooted tree TIG with two branches of the fuzzy InvG G.

Step 1. Set root = i and compute N(i) = the open neighbourhood of i = {v : (v, i) ∈ E}.

Step 2. If |N(i)| = 1, then end.

If |N(i)| > 1 and i is the starting interval, i.e. i = 1, then goto Step 3.

If |N(i)| > 1 and i is the end interval, i.e. i = n, then goto Step 4.

If |N(i)| > 1 and i is an interval between 1 and n, i.e. 1 < i < n, then

goto Step 5.

Step 3. Set N(i) as the child of the root i and marked them.

Step 3.1. Set k = max{bk : (k, i) ∈ E},

j = max{bj : (j, i) ∈ E, k 6= j and bj < bk}.

Step 3.2. Find unmarked adjacent of j and k and if N(j)
⋂
N(k) = φ,

then m1 = max{bm1 : (m1, k) ∈ E,m1 ∈ N(k)} and set all unmarked

N(k) as the child of k and marked them.

else m′1 = max{bm′1 : m′1 ∈ N(k) ∩N(j)} set as child of j and

{N(k) ∪N(j)− {m′1}} as child of k and marked and find

m′′1 = max{N(k) ∪N(j)− {m′1}}.

Step 3.3. This process is continued until all intervals are marked .

Step 3.4. Compute the interval tree TIG.

3.4. MADT on fuzzy interval graph 49

u
u u
u
u u
u
u u
uu u
u u

1[2.5, 3]

2[7.5, 9] 3[1, 3]

5[3, 4.5]

6[2.5, 3] 7[3, 3.5]

8[4, 5]

9[3, 5] 10[2.5, 3]

11[5, 6]

12[1, 3] 13[3.5, 4.5]

14[2.5, 3.5] 15[1.5, 2]

Level
0

1

2

3

4

5

6

7

8

u4[8, 10]

Figure 3.7: Tree TIG of the fuzzy interval graph G.

Step 4. Set N(i) as the child of the root i and marked them.

Step 4.1. Set j′ = min{aj′ : (j′, i) ∈ E},

k′ = min{ak′ : (k′, i) ∈ E, k′ 6= j′ and a′j < a′k}.

Step 4.2. Find unmarked adjacent of j′ and k′ and if

N(j′)
⋂
N(k′) = φ, then m1 = min{am1 : (m1, j

′) ∈ E,m1 ∈ N(j′)}

and set all unmarked N(j′) as the child of j′ and marked them.

else m′1 = min{am′1 : m′1 ∈ N(k′) ∩N(j′)} set as child of k′

and {N(k′) ∪N(j′)− {m′1}} as child of j′ and marked and find

m′′1 = min{am′′1 : m′′1 ∈ {N(k′) ∪N(j′)− {m′1}}}.

Step 4.3. This process is continued until all intervals are marked.

Step 4.4. Compute the interval tree TIG.

Step 5. Set N(i) as the child of the root i and marked them.

Step 5.1. Set p = max{bp : (p, i) ∈ E}, q = min{aq : (q, i) ∈ E}

and p 6= q.

Step 5.2. Set p′ = max{bp′ : (p′, p) ∈ E, p′ ∈ N(p)} and set all

unmarked N(p) as the child of p and marked.

Step 5.3. Set q′ = min{aq′ : (q′, q) ∈ E, q′ ∈ N(q)} and set all

unmarked N(q) as the child of q and marked.

Step 5.4. This process is running till all intervals are marked.

Step 5.5. Compute the interval tree TIG.

Step 6. Put weight wj = [aj , bj], j = 1, 2, . . . , n to the vertex j in TIG

corresponding to the interval j of the fuzzy InvG G.

end INT-TREE.

50Chapter 3. Inverse 1-center location problem and MADT on interval graphs

Illustration of the Algorithm INT-TREE : Let i = 1 be the pre-specified node which

is the root. Next the open neighbourhood of 1 is N(1) = {2, 3}, where the nodes of N(1)

as the child of the root 1. Next, 3 has the maximum right extremity bj of the intervals of

N(1) correlative to the nodes of the graph G and 2 has the next maximum right extremity

of N(1) correlative to the nodes of the graph G. Next the open neighbourhoods of 3 and

2 are N(3) = {4, 5} and N(2) = {4} respectively, where the nodes of N(3) and N(2) as

the child of the roots 3 and 2. Next 5 has the maximum right extremity of the intervals

of N(3) correlative to the nodes of the graph G and 4 has the minimum tail of the inter-

vals of N(2) correlative to the nodes of the graph G. Next the open neighbourhood of 5 is

N(5) = {6, 7}, where the nodes of N(5) as the child of the root 5. Next 7 has the maximum

right extremity of the intervals of N(5) correlative to the nodes of the graph G. Next the

open neighbourhood of 7 is N(7) = {8}, where the vertex of N(7) as the child of the root 7.

Next the open neighbourhood of 8 is N(8) = {9, 10}, where the vertices of N(8) as the child

of the root 8. Next 10 has the maximum right extremity of the intervals of N(8) correlative

to the vertices of the graph G. Next the open neighbourhood of 10 is N(10) = {11}, where

the vertex of N(10) as the child of the root 10. Next 11 has the maximum right extremity

of the intervals of N(10) correlative to the nodes of the graph G. Next the open neigh-

bourhood of 11 is N(11) = {12, 13}, where the nodes of N(11) as the child of the root 11.

Next 13 has the maximum right end point among the intervals of N(11) correlative to the

vertices of the graph G. Next the open neighbourhood of 13 is N(13) = {14, 15}, where the

nodes of N(13) as the child of the root 13. Next 15 has the maximum right extremity of

the intervals of N(13) correlative to the nodes of the graph G. In this way we get longest

left path Li from the vertex 1 to other vertex 4, i.e. the path 1 → 2 → 4 and find longest

right path Ri from 1 to the vertex 15 does not contain any vertex of the path Li except

1, i.e. the path 1 → 3 → 5 → 7 → 8 → 10 → 11 → 13 → 15. Next put the weights

[8, 10], [7.5, 9], [2.5, 3], [1, 3], [3, 4.5], [3, 3.5], [4, 5], [2.5, 3], [5, 6], [3.5, 4.5], [1.5, 2],

[2.5, 3], [3, 5], [1, 3], [2.5, 3.5] to the vertices 4, 2, 1, 3, 5, 7, 8, 10, 11, 13, 15, 6, 9, 12, 14 respectively.

Finally we construct the tree TIG with root i = 1 (Figure 3.7).

We have the following important observation on TIG.

Lemma 3.4.1 The tree TIG is constructed by the Algorithm INT-TREE is a spanning

tree.

Proof. As per construction of the tree TIG by end points scanning approach of the intervals

we get n vertices and (n−1) edges without any circuit. Therefore the tree TIG is a spanning

tree. Hence the result. �

3.4. MADT on fuzzy interval graph 51

Theorem 3.4.1 The Algorithm INT-TREE is finished in O(n) time.

Proof. Step 1 runs O(n) time, as the intervals are sorted and the root is selected from

n intervals. Step 2 is completed in O(n) time, since number of intervals is n. Since the

extremities of the intervals are sorted, so the maximum element (node) from a set of nodes

can be completed in O(n) time. Again intersection of two finite sets of n elements (number of

vertices) can be executed in O(n) time. Thus Step 3, or Step 4, or Step 5 can be finished in

O(n) time. So overall time complexity of the Algorithm INT-TREE is O(n) time, where n

is the number of nodes of the weighted InvG. Since weight as interval number of the vertex in

tree TIG corresponds the weight of the interval in fuzzy InvG, so it is one to one corresponds,

and hence Step 6 runs in O(n) time. �

Thus, the tree TIG of the fuzzy InvG is formed. The tree TIG with root as 1 of the

InvG G (Figure 3.7). Next we put the weight as interval number of interval diagram to the

corresponding vertex in the tree TIG.

As per construction of BFS tree we give the following results in BFS tree T .

Lemma 3.4.2 If x, y ∈ V and |level(x)− level(y)| > 1 in TIG, then there is no edge between

the nodes x and y in G, except such (x, y) ∈ E in which level(x) = 1 and level(y) = k, where

k is the highest level.

Proof. Let |level(x) − level(y)| > 1 but (x, y) ∈ E, i.e. x and y are connected directly.

So by the idea of breath first search, at any stage if x, y are the adjacent to the previously

visited node, then x and y to be placed in same level, so level(x) = level(y). But, if x is

adjacent to a previously visited node then y must be adjacent to next visited node, then y

to be placed in the next level in TIG. So, in this case |level(x)− level(y)| = 1. Thus, either

level(x) = level(y) or |level(x) − level(y)| = 1 implies (x, y) ∈ E, which is reverse to the

assumption |level(x)− level(y)| > 1, (x, y) ∈ E.Hence the result. �

Now, we shall prove that the BFS tree is a MdsT.

Lemma 3.4.3 The spanning tree TIG is a MdsT.

Proof. According to the construction the BFS tree, the main path of the tree TIG is the

greatest path called diameter. The main path covers the whole interval with least number

of intervals. This diameter is minimum, because TIG is the minimum height tree. Also, TIG

is a spanning tree. Hence TIG is a MdsT. �

In next subsection, we shall discuss about the modified spanning tree T
′
IG of the spanning

tree TIG.

52Chapter 3. Inverse 1-center location problem and MADT on interval graphs

3.4.3 Modification of the spanning tree TIG

It is observed that TIG is not necessarily a MADT. So, modification of TIG is necessary. We

modify TIG by the following way:

Firstly, we compute N(u∗i) ∈ G for each vertices on the main path P . If there are

any common adjacent vertices of two nodes u∗i and u∗i+1 in the main path P , where i =

0, 1, 2, . . . , k − 1, then we can shift them by the following way.

Step I: In G, if any common adjacent vertex w of u∗i and u∗i+1 exist, then we calculate the

number of vertices k1, k2 respectively, on the both sides separately of the node u∗i (taken as

fixed and leaves which does not lie on main path are not countable) in TIG along the main

path. Next, calculate their difference, say, d1 = |k1 − k2|.

Step II: Again, find the number of vertices on the both sides separately of the node u∗i+1

(taken as fixed) in TIG along the main path (ignoring the vertex obtained in Step I). Next,

calculate their difference, say, d2.

Step III: Case-I: If d1 − d2 < 0, then unaltered, i.e. w remains adjacent of u∗i in TIG.

Case-II: If d1 = d2, then calculate D1 =
∑

u,v∈V (T1)
dT1(u, v) (total distance before

shifting) and D2 =
∑

u,v∈V (T1)
dT1(u, v) (total distance after shifting).

If D1 < D2 then, tree remains unaltered,

else w is shifted.

Case-III: If d1 − d2 > 0, then the adjacent vertex w of the node u∗i is

shifted to the node u∗i+1. i.e. w is finally adjacent to u∗i+1 in TIG.

Similar idea is used for pair of any two nodes on the main path P . Using this method we

construct the modified spanning tree T
′
IG starting from TIG. The tree T

′
IG (Figure 3.8) is

the modified BFS tree of the BFS tree TIG.

Lemma 3.4.4 If T
′
IG is a BFS tree, then the distance d

T
′
IG

(u, v) between the vertices u and

v in T
′
IG is given by

d
T
′
IG

(u, v) =



level(v), if u is a root and v is any vertex,

|level(v)− level(u)|, if u and v both are nodes in the main path P,

|level(parent(u))− level(v)|+ 1, if u is any leaf and v is any node

in the main path P.

Proof. Case I: If u is a root.

In the tree T
′
IG, with u as root there exists a unique shortest path u→ z1 → z2 · · · → zp−1 →

v from u to any vertex v ∈ G, where u is the parent of z1 and zi is the parent of zi+1 and

so on for each i = 1, 2, . . . , p− 2 and zp−1 is the parent of v. Since each vertex of this path

3.4. MADT on fuzzy interval graph 53

u
u u
u
u u
u
u u
uu u
u u

1[2.5, 3]

2[7.5, 9] 3[1, 3]

5[3, 4.5]

6[2.5, 3] 7[3, 3.5]

8[4, 5]

9[3, 5] 10[2.5, 3]

11[5, 6]

12[1, 3] 13[3.5, 4.5]

14[2.5, 3.5] 15[1.5, 2]

u4[8, 10]

Level
0

1

2

3

4

5

6

7

8

Figure 3.8: Modified BFS tree T
′
IG of the tree TIG.

is directly connected with the next one, hence the length of this path is p = level(v). Thus

d
T
′
IG

(u, v) ≤ p. Next we are to show that d
T
′
IG

(u, v) 6< p. If possible, let d
T
′
IG

(u, v) = q < p.

Then there exist a path u → y1 → y2 · · · → yq−1 → v from u to any vertex v ∈ G. As

each vertex of this path is directly connected with the next one, level(y1) is either 0 or 1

since level(u) = 0 and level(yk+1) is either level(yk) or level(yk) + 1 or level(yk)− 1. Thus

level(y2) is 0 or 1 or 2, level(y3) is 0 or 1 or 2 or 3 and so on. Therefore level(v) is 0 or 1 or

2 or...or q. This is a contradiction since level(v) = p and p > q. Hence d
T
′
IG

(u, v) 6< p which

implies that d
T
′
IG

(u, v) = p, i.e. d
T
′
IG

(u, v) = level(v).

Case II: If u and v both are nodes in the main path P .

If u and v both are the nodes in the main path P , then as per rule of construction of

BFS, there is a shortest path u → z
′
1 → z

′
2 · · · → v. Here z

′
1 is at next level of u, z

′
2 is at

the next level of z
′
1 and so on up to v. Let level of u be i, so d(u, z

′
1) = 1 = (i + 1) − i =

level(z
′
1)−level(u), d(u, z

′
2) = d(u, z

′
1)+d(z

′
1, z

′
2) = 1+1 = 2 = (i+2)−i = level(z

′
2)−level(u).

If d(u, z
′
k) = k = (i+ k)− i = level(z

′
k)− level(u), then d(u, z

′
k+1) = d(u, z

′
k) + d(z

′
k, z

′
k+1) =

k + 1 = (i+ k + 1)− i = level(z
′
k+1)− level(u). Hence d

T
′
IG

(u, v) = |level(v)− level(u)|.

Case III: If u is any leaf and v is any node in the main path P .

In this case, there is a path from u to v via the parent of u. If level(u) = i, then

level(parent(u)) = i−1 and parent(u) is a node in the main path P . Therefore d
T
′
IG

(u, v) =

d(u, parent(u)) + d(parent(u), v) = 1 + level(v)− level(parent(u)),

i.e. d
T
′
IG

(u, v) = |level(parent(u))− level(v)|+ 1. �

54Chapter 3. Inverse 1-center location problem and MADT on interval graphs

3.4.4 Average distance of interval graph

Many works on average distance in graphs are available in literature [4, 10, 41, 53, 70, 100].

Chung [23] give a bound of average distance of a graph in terms of independent number.

She has shown that µ(G) ≤ α(G), where µ(G) and α(G) denote respectively the average

distance and the independent number of the graph G.

Also in [29], the average distance of an InvG with edges of unit length can be computed

in O(m) time, where m is the number of edges. In this section, we discuss about the

computation of average distance of a fuzzy InvG.

The average distance can be used as a tool in analytic networks where the performance

time is proportional to the distance between any two nodes. It is a measure of the time needed

in the average case, as opposed to the diameter, which indicates the maximum performance

time.

3.4.5 Algorithm and its complexity on average distance

At first we compute dG(u, v) for every pair u, v (u 6= v), then we compute the sum of

distances between all pairs of vertices and finally we multiply it by the factor 2/{n(n− 1)}

to get the average distance. From above procedure it follows that the time to compute the

average distance is same as the time to compute all pairs shortest distances.

Here we discuss an algorithm to construct MADT for a given fuzzy InvG. Also time com-

plexity are presented here.

Algorithm INMAD-TREE

Input: Sorted endpoints of the intervals I = [i1, i2, . . . , in], ij = [aj , bj] of the interval

diagram of the fuzzy InvG G = (V,E).

Output: MADT T
′
IG and average distance µ(T ′IG).

Step 1: Work out the MdsT TIG //Subsection 3.4.2//

and determine level(u) = d(u∗, u), u∗ is either the vertex corresponding

to the interval of maximum right end points of the intervals, which are

adjacent to i1.

Step 2: Work out N(u∗i) for all u∗i ∈ T and k = height of the tree TIG.

Step 3: //Modification of the tree TIG//

Work out N(u∗i) and N(u∗i+1) for i = 0, 1, 2, . . . , k − 1 on the main

path P .

Step 3.1: For i = 0 to k − 1 do

3.4. MADT on fuzzy interval graph 55

If N(u∗i) ∩N(u∗i+1) = φ then go to Step 3.1,

If N(u∗i) ∩N(u∗i+1) 6= φ and let w ∈ N(u∗i) ∩N(u∗i+1) then,

Step 3.1.1: Determine the number of vertices k1, k2 respectively, on the

both sides separately of the node u∗i (taken as fixed) in TIG

along the main path.

Next, determine their difference, say, d1 = |k1 − k2|.

Step 3.1.2: Determine the number of vertices on the both sides

separately of the node u∗i+1 (taken as fixed) in TIG

along the main path (ignoring the vertex obtained in Step I).

Next determine their difference, say, d2.

Step 3.1.3: If d1 − d2 < 0, then unaltered;

if d1 − d2 = 0, then determine D1 =
∑

u,v∈V (T1)
dT1(u, v) (total distance before

shifting) and D2 =
∑

u,v∈V (TIG) dT1(u, v) (total distance after shifting) and then

consider minimum{D1, D2};

if d1 − d2 > 0, then the adjacent vertex w of the node u∗i in the main path P is

shifted to the node u∗i+1 in the main path P .

Step 3.2: Set T
′
IG as modified spanning tree of TIG of the fuzzy InvG G.

Step 4: Determine d
T
′
IG

(u, v) //Lemma 3.4.4//

Where,

d
T
′
IG

(u, v) =



level(v), if u is a root and v is any vertex,

|level(v)− level(u)|, if u and v both are nodes in the main path P,

|level(parent(u))− level(v)|+ 1, if u is any leaf and v is any node

in the main path P.

and µ(T
′
IG) = 2

n(n−1)
∑

u,v∈V (T ′) dT ′IG
(u, v).

end INMAD-TREE.

Illustration of the Algorithm INMAD-TREE :

In Figure 3.7, which is the spanning tree of the fuzzy InvG G, u∗i = 2 and u∗i+1 = 3 are

two successive nodes. 4 is the similar adjacent of the nodes u∗i = 2 and u∗i+1 = 3, i.e. w = 4.

Taking the vertex 2 as origin, the number of nodes of one side of 2 is 0 and the number of

nodes of other side of 2 is 13. So their variation is d1 = 13− 0 = 13.

Now considering the node 3 as origin, the number of nodes of one side of 3 is 2 (ignoring

the node 4) and the number of nodes of other side of 3 is 11 when the node 4 is adjacent

with the node 3. Hence their variation is d2 = 11− 2 = 9. Therefore d1 > d2. So, the node

4 is agitate to the node 3. Then we have the modified spanning tree T
′
IG(Figure 3.8).

Next determine the average distance µ1(G) equivalent to the tree TIG. Again determine

56Chapter 3. Inverse 1-center location problem and MADT on interval graphs

average distance µ2(G) equivalent to the tree T
′
IG. Here µ1(G) = [xl, xr] = [18.85, 22.25]

and µ2(G) = [yl, yr] = [15.78, 20.88]. Let m1 = mean(µ1(G)), m2 = mean(µ2(G)), w1 =

width(µ1(G)) and w2 = width(µ2(G)). Here, m1 = 20.55,m2 = 18.33, w1 = 1.7 and w2 =

2.55.

Therefore, A(µ1(G) > µ2(G)) = 2.22/4.25 = 0.52235. Hence 0 < A(µ1(G) > µ2(G)) <

1,m1 > m2 and xl < yr.

Clearly, µ1(G) > µ2(G). Hence T
′
IG is the minimum average distance tree of fuzzy InvG

G.

Next we shall show that for any fuzzy InvG, the tree designed by the Algorithm INMAD-

TREE represents a MADT.

Theorem 3.4.2 For any fuzzy InvG, the tree designed by the Algorithm INMAD-TREE

is a MADT.

Proof. Let G = (V,E) be any fuzzy InvG. Then, using Subsection 3.4.2, one can design

spanning tree with minimum diameter. In this tree, shifting (if necessary, under conditions

stated in Subsection 3.4.3) of the some nodes to its next adjacent node in the main path

means that those nodes are placed on such side of the tree, with respect to the fixed node

in the main path, in which that side contains maximum number of nodes. As a result, after

all possible shifting of the nodes, the sum of total distances over all unordered pair of nodes

decreases. Thus the average distance of the tree decreases. Hence, the tree designed by the

Algorithm INMAD-TREE is a MADT for any fuzzy InvG. This completes the proof. �

Now we discuss the T-complexity of the Algorithm INMAD-TREE.

Theorem 3.4.3 The MADT of the fuzzy InvG G with n nodes can be completed in O(n2)

time.

Proof. In Algorithm INMAD-TREE Step 1 takes O(n) time. Step 2 can be finished

in O(n2) time. O(n) time required to complete each Step 3.1.1 and 3.1.2. Also Step 3.1.3

takes the time O(n) . Total T-complexity of Step 3.1 is O(n2) as the Step 3.1 repeats (k−1)

times, where k is of O(n). Again O(n2) time is taken to complete the Step 3.2. The last

step, i.e. Step 4, in worst case, can be computed in O(n2) time. Finally the T-complexity of

our proposed algorithm is O(n2). �

3.5 Summary

In that chapter, we investigated the Inv1C location problem with different vertex weights on

the tree for the weighted InvG G. We developed an combinatorial algorithm to construct

3.5. Summary 57

the tree of InvG in O(n) time, where |V | = n. Also in this chapter, we designed MADT on

fuzzy InvG. Also, we investigated the MADT on the fuzzy InvG which is designed based on

BFS technique. The algorithm is completed in O(n2) time, where |V | = n.

58Chapter 3. Inverse 1-center location problem and MADT on interval graphs

