
Chapter 2

Computation of inverse 1-center

location problem on the weighted

trees∗

2.1 Introduction

Let G be a connected graph, such that |V1| = n + 1, |E1| = n. Every edge (u, v) ∈ E

has different weight wi. For a graph G, a walk can be defined as a finite alternating series

of vertices and edges which is beginning and ending with vertices such that each edge is

incident with those vertices which are preceding and following it. In a walk,there will be

no edge which appears more than once. However, a vertex can appear more than once. A

path can be defined as an open walk in which there will be no vertex appearing more than

once. A circuit can be defined as a closed walk in which there will be no vertex (except the

initial vertex and the final vertex) appearing more than once. A tree T is a graph which is

connected, containing no circuits. That is, a tree T is a connected acyclic graph. Clearly

there will be one and only one path between each and every pair of vertices of tree T. For an

w-tree, there will be a non-negative real number attached with each edge of the tree. For an

un-w-tree T (V1, E1), where |E1| = |V1| − 1, the eccentricity e(x) of a vertex x can be defined

as the distance from x to the vertex which is farthest from x ∈ T , i.e.

e(x) = max {d(x, xi), for all xi ∈ T},

where the number of the edges on the shortest path between x and xi is d(x, xi).

∗A part of the work presented in this chapter is published in CiiT International Journal of Networking

and Communication Engineering, 4 (2012) 70-75.

23

24 Chapter 2. Inverse 1-center location problem on trees

For a w-tree T (V1, E1), the eccentricity e(x) of the vertex x can be defined as the sum of

the weights of the edges from x to the vertex which is farthest from x ∈ T , i.e.

e(x) = max {d(x, xi), for all xi ∈ T},

where the sum of the weights of the edges on the path between x and xi is d(x, xi).

A center of a tree T can be defined by a vertex with minimum eccentricity i.e. if e(s) =

min{e(x), for all x ∈ V1}, then s is called 1-center. We know very well that every tree is

either monocentric or bicentric.

In a tree T , the eccentricity e(x) of a center can be defined as the radius of the tree T

which is denoted by ρ(T), i.e.

ρ(T) = {minx∈T e(x)}.

For a tree T , the diameter can be defined as the length of the longest path that implies,

the diameter is the maximum eccentricity.

Let the w-tree T with (n + 1) vertices and n edges. For a tree, within certain bounds,

Inv1C problem consists in changing edge weights such that a pre-specified vertex be 1-center.

Here, we propose an algorithm to compute Inv1C location problem on EdwT in O(n)

time, where the number of vertices of the tree is n.

u
u u u

u u u u u u
u u u u

u t
u u

u
u

v2

v6

v1

v3

v4 v5

v7v8v9

v10 v11 v12

v13v14

v15v16v17

v18

v19v20

10

9

214

11 11

137

5

736

10

3
6

1134

5

Figure 2.1: A tree T .

2.1.1 Applications of the problem

For example, an essential application appears from geophysical science and concerns fore-

telling the activity of earthquakes. To accomplish this aim, geologic zones have to discretized

into a number of cells. In a corresponding network (Moser [77]), adjacency relations may

2.2. Basic terminologies and results 25

be modeled by arcs. Some estimates for the transmission times are well known but it is

very hard to obtain precise values. After observing an earthquake and at various points, the

arrival times of the resulting seismic perturbations and comprising that earthquakes move

along shortest paths, the main problem is to filter the estimates of the transmission times

between the cells. This problem is just an inverse shortest path problem.

There is another possible application which actually changes the real costs: Suppose, a

road network is given and there are some facilities. The target is to set the facility in a way

that maximum distance to the customers will be minimum. However often we face with such

a situation that there is a facility, already exists which can not be relocated with equitable

costs. In this situation, for improving roads costs, the modification of the network is needed

as little as possible, so that the facility’s location be optimum (or so that the distances to

the customers will not overstep the given bounds). We have explained an instance of the

inverse center location problem. For modeling traffic networks, to set tolls in order to insist

an active use of the network (Dial [33]) is a further option. The ‘inverse optimization’ word

was motivated in part by the widespread usage of inverse methods in so many other fields,

for example Marlow [68] and Engl et al. [38].

2.1.2 Organization of the chapter

We shall discuss about basic terminologies and results in the next section i.e. the formulation

of Inv1C problem of the EdwT. We design an algorithm to get Inv1C of the modified EdwT

in Section 2.3. We have also presented some notations in this section. We also calculated

the T-complexity in this section. In Section 2.4 we give the summary.

2.2 Basic terminologies and results

Let v0, v1, v2, . . . , v(n−1), vn be an unweighted path between v0 and vn of the tree T i.e.

(vk, vk+1) ∈ E1, for k = 0, 1, 2, 3, . . . , (n− 1) and this path is denoted by P (v0, vn). Clearly

for a path P (v0, vn), the path length, denoted by δ(P), is d(v0, vn), i.e. d(v0, vn) = δ(P) =

e(v0) = e(vn) and if this path length P (v0, vn) is even, i.e. n is even, then radius of the path

P is given by ρ(P) = δ/2 = d(v0, vn)/2 and this is the eccentricity of the vertex vn
2
. So the

center of the path P (v0, vn) is vn
2

and is at odd location when n is odd, then radius of the

path P is given by ρ(P) = (δ + 1)/2 and this is the eccentricity of each of the vertices vn−1
2

and vn+1
2

, i.e. the two centers of the path P (v0, vn) are vn−1
2

and vn+1
2

if n is odd.

Now we can introduce dummy vertex vc in between vn−1
2

and vn+1
2

such that (vn−1
2
, vc) ∈ E1

and (vc, vn+1
2

) ∈ E1 so that vc becomes the one center of the path p(v0, vn).

26 Chapter 2. Inverse 1-center location problem on trees

Let vl be the pre-specified vertex which is to be the center of the edge weighted path

P (v0, vn). To minimize the cost of changing the weights of the edges in order to vl to become

the center of the path P (v0, vn) is our problem.

Now in the following, we give the steps to show the Inv1C problem on the edge weighted

path P (v0, vn).

i) Find d1 = d(vj , v0) and d2 = d(vl, vn).

ii) If d1 = d2, then vl is 1-center.

iii) If d1 < d2 we increase the edge weights of the edges (vl, v(l−1)),

(v(l−1), v(l−2)), . . . , (v1, v0) and decrease the edge weights of the edges (vl, v(l+1)),

(v(l+1), v(l+2)), . . . , (v(n−1), vn) maintaining the following three conditions:

(a) The vertex vl becomes Inv1C of P for w(e), where e ∈ E1(P) i.e. for all p ∈ V1(P),

maxv∈V1(P) dw(v, vl) ≤ maxv∈V1(P) dw(v, p),

where w = w(e) is the weight of the edge (positive real number) e and w(e) are the modified

edge weights,

(b) The linear weighted(cost) mapping

∑
e∈E(P)

{c+1 (w)x1(w) + c−1 (w)y1(w)}

takes lowest cost, where x1(w) and y1(w) are the maximum amounts by which the edge

weight w(e) is grown and reduced gradually. c+1 (w) is the non-negative cost if w(e) is grown

by one unit and c−1 (w) is the non-negative cost if w(e) is reduced by one unit,

(c) The new assigned edge weights stay within given modified bounds wlow(e) ≤ w(e) ≤

wupp(e), for all edge in E1(P).

iv) If d1 > d2 we increase the edge weights of the edges (vl, vl+1), (vl+1, vl+2), . . . , (vn−1, vn)

and decrease the edge weights of the edges (vl, vl−1), (vl−1, vl−2), . . . , (v1, v0) maintaining the

above three conditions.

Hence, based on the above conditions, the Inv1C location problem on the EdwT T is

formulated as the non-linear semi-infinite optimization model mentioned below:

Minimize
∑

e∈E1(T)

{c+1 (w(e))x1(w(e)) + c−1 (w(e))y1(w(e))}

subject to

maxv∈V1(T) dw(v, s) ≤ maxv∈V1(T) dw(v, p), ∀ p ∈ T (or p ∈ V1(T)),

w(e) = w(e) + x1{w(e)} − y1{w(e)} ∀ e ∈ E1(T),

2.3. Algorithm and its complexity 27

x1{w(e)} ≤ w+{w(e)}, ∀ w ∈ E1(T),

y1{w(e)} ≤ w−{w(e)}, ∀ w ∈ E1(T),

x1{w(e)}, y1{w(e)} ≥ 0, ∀ w ∈ E1(T),

where w+{w(e)} = wupp(e) − w(e) , w−{w(e)} = w(e) − wlow(e) are maximum feasible

amounts for which w(e) can be grown and reduced gradually. Each feasible solution (x, y)

with x = {x1(w(e)) : e ∈ E1(T)} and y = {y1(w(e)) : e ∈ E1(T)} is known as a feasible

modification of the Inv1C location problem.

2.3 Algorithm and its complexity

In this section we introduce a combinatorial algorithm for the Inv1C location problem on

the EdwT T. The main idea of the introduced algorithm is as follows:

Suppose T be a w-tree with (n+ 1) nodes and n edges. Suppose V1 be the set of vertex

and E1 be the set of edges. Suppose s be any non-pendant specified vertex in the tree T

which is to be 1-center. At first we calculate the longest weighted path from s to any pendant

vertex of T . Let svi be the farthest weighted path from s to vi and svl be the next farthest

path from s to vl such that there is no common vertex except s. Now calculate the weights of

two paths svi and svl. If weight of svi and svl are equal then the vertex 1-center is s which is

Inv1C of T . But our concentration is on unequal weights. If the weight of svi is greater than

svl then we add the maximum weight with the pre weighted edge from s to vl consecutively

such that wlow(e) ≤ w(e) ≤ wupp(e), for all e ∈ E1(T), where wlow(e) and wupp(e) are the

smallest and highest edge weights in T and w(e) be the modified edge weight. In this way if

we seen the weight of svi and weight of svl are equal, then s be the Inv1C. But, if the weights

of svi and svl are not equal, then we subtract the maximum weight from the pre weighted

edge consecutively from the vertex s to vi so that wlow(e) ≤ w(e) ≤ wupp(e), ∀ e ∈ E1(T)

and in this way the weights of svi and svl must become equal. Therefore, the pre-specified

node s be the Inv1C of the EdwT T.

Now, we introduce some notations for our algorithmic purpose.

R : Longest edge weighted path from s.

L : Another longest edge weighted path from s does not contain any

vertex of the path R except s.

w(R) : Weight of the path R.

w(L) : Weight of the path L.

w∗(R) : Modified weight of the path R.

w∗(L) : Modified weight of the path L.

28 Chapter 2. Inverse 1-center location problem on trees

Our proposed algorithm is as follows :

Algorithm 1-INV-LOC-TREE

Input: Tree T with edge weight and specified vertex s.

Output: Vertex s as Inv1C of the tree T and modified tree T ′.

Step 1. Set s as a pre-specified vertex in T.

Step 2. Compute the longest edge weighted path (only one) R = svi from s to

other vertex vi on the given tree.

Step 3. Next compute another longest edge weighted path (only one) L = svl

from s to the vertex vl does not contain any vertex of the path R except s.

Step 4. Calculate difference of the weights of two paths R and L i.e. |w(R)− w(L)|.

Step 5. //Computation of InvC//

Step 5.1. If w(svi) = w(svl), i 6= j, then s is the vertex one center as well as

Inv1C of T .

Step 5.2. If w(svi) > w(svl), then distribute the weight w(svi)− w(svl) on

the path svl, i.e. L, from s such that the bounds rule holds good.

Step 5.2.1. If w∗(L) = w(R), then s is the vertex 1-center.

Step 5.2.2. If w∗(L) < w(R), then we decrease the excess weight of the

path R from s with bounds rule until w∗(L) = w∗(R).

Step 5.3. If w(svi) < w(svl), then distribute the weight w(svl)− w(svi) on

the path svi, i.e. R, from s such that the bounds rule holds good.

Step 5.3.1. If w∗(R) = w(L), then s is the vertex 1-center.

Step 5.3.2. If w∗(R) < w(L), then we decrease the excess weight of the

path L from s with bounds rule until w∗(R) = w∗(L).

end 1-INV-LOC-TREE.

Using the Algorithm 1-INV-LOC-TREE we can find out the Inv1C location problem

on any EdwT. Justification of this statement follows the following illustration.

Illustration of the algorithm to the tree T in Figure 2.1:

Let s = v1 be the pre-specified vertex of the tree T which is to be one center. Next we find

the longest path R = v1v13 = sv13 from s to other vertex v13 on the given tree and find

next longest path L = v1v10 = sv10 from s to the vertex v10 does not contain any vertex

of the path R except s. Next calculate the weights of the paths R and L. Let w(R) and

w(L) be the weights of the paths R and L respectively. Here w(R) = 57 and w(L) = 34.

Next calculate the difference of weights of two paths i.e. calculate w(R)− w(L). Therefore

w(R) − w(L) = 57 − 34 = 23. To get equal weights of w(R) and w(L) we add the weight

4 to the edge (v1, v3), 8 to the edge (v3, v5), 1 to the edge (v5, v9), 9 to the edge (v9, v10)

2.3. Algorithm and its complexity 29

u
u u u

u u u u u u
u u u u

u t
u u

u
u

v2

v6

v1

v4

v7v8

v11
v12

v13v14

v15v16v17

v19v20

9

214

11 11

137

736

14

14

v10

14

v3

14
3

14 95
v18

v5

v9

Figure 2.2: Modified tree T ′ of the tree T .

and decrease the weight 1 from the weight of the edge (v1, v2). After modification we get

w(L) = {(10+4)+(6+8)+(13+1)+(5+9)} = 56 and w(R) = {(10−1)+9+14+11+13} = 56

i.e. w(L) = w(R). Therefore the vertex s = v1 is the inverse one center.

Now we have the modified tree T ′ (Figure 2.2) with modified edge weight.

Lemma 2.3.1 The algorithm 1-INV-LOC-TREE correctly computes the Inv1C location

on the EdwT.

Proof. Let s be the pre-specified vertex in T . We have to prove that s is the Inv1C. At

first, by Step 2 we have calculated the weight of the path R = svi and by Step 3, the weight

of the path L = svl. If w(R) = w(L), then s is the vertex 1-center, also Inv1C (Step 5.1).

But if w(R) > w(L), then by Step 5.2 we have distributed the excess weight w(R) − w(L)

on the path L from s obeying the bounds conditions wlow(e) ≤ w(e) ≤ wupp(e), ∀ e ∈ E1(T)

and if w(R) < w(L), then we have distributed the excess weight w(L)−w(R) on the path R

obeying the same bounds rule (Step 5.3). By this process we get w∗(R) = w∗(L), which is

the condition of Inv1C. Therefore s is the Inv1C. Hence algorithm 1-INV-LOC-TREE

correctly computes the Inv1C for any EdwT. �

We have another important observation in the tree T ′ given by the algorithm 1-INV-

LOC-TREE.

Lemma 2.3.2 The specified vertex s in the modified tree T ′ is the 1-center.

Proof. This result directly follows from Lemma 2.3.1. By algorithm 1-INV-LOC-

TREE, finally we get w∗(R) = w∗(L) in the modified tree T ′. Therefore the specified vertex

s in the modified tree T ′ is the 1-center. �

30 Chapter 2. Inverse 1-center location problem on trees

We describe the total time needed to compute algorithm 1-INV-LOC-TREE on the

EdwT, follows below.

Next we shall prove an important result.

Theorem 2.3.1 The T-complexity to find Inv1C problem on a given EdwT T is O(n), where

the number of vertices of the tree is n.

Proof. O(1) time is needed in Step 1. If tree T is traversed in a DFS manner in Step 2,

longest edge weighted path from s to vi can be computed in O(n) time . Similarly O(n) time

is needed to compute Step 3. Step 4 takes O(1) time as comparing two numbers needs O(1)

time. Also Step 5 needs O(1) time. Comparing two numbers and distribution of the excess

weight takes O(n) time. So, O(n) time is needed to complete Step 5.2 and Step 5.3. Hence

overall T-complexity of our proposed algorithm 1-INV-LOC-TREE is O(n) time. �

2.4 Summary

In graph theory, for a tree, Inv1C location problem with different edge weights is an essential

real life problem. In this chapter, we investigated the Inv1C location problem with different

edge weights on the tree. We developed exact sequential algorithm for the tree with fast

running time O(n), where the total number of vertices of the tree is n.

