2018

CBCS

1st Semester

STATISTICS

PAPER-C1T

(Honours)

Full Marks: 40

Time: 2 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Descriptive Statistics

1. Answer any five questions:

5×2

(a) Distinguish between quantitative and qualitative data.

- (b) When a histogram is useful?
- (c) Show that root mean square deviation is minimum when measured from mean.
- (d) Give the relation between Gini's co-officient and variance.
- (e) How can co-efficient of variation be used as measure of consistency for two independent data sets?
- (f) Define Pearson's co-efficient of skewness and show how it can be used to determine the skewness of a distribution.
- (g) Define Laspeyre's and Poasche's index number formulae.
- (h) Define odds ratio measure.
- 2. Answer any four questions:

4×5

- (a) Distinguish between line diagram and ratio chart.
- (b) Show that mean absolute deviation is minimum when measured from the median.

- (c) Why is Fisher's index number an ideal index number?
- (d) How can you obtain the median of a frequency distribution graphically?
- (e) For a frequency distribution, the upper class boundary bears a constant ratio r to the lower class boundary. If x_i and f_i be respectively the class mark and frequency of the *i*th class and G be the geometric mean,

show that
$$\log G = \log x_1 + \frac{\log r}{n} \sum_{i=1}^{k} (i-1)f_i$$

where
$$n = \sum_{i=1}^{k} f_i$$
.

(f) Using Cauchy Schwartz inequality, prove that $b_2 \ge b_1 + 1$, where the notations have their usual meanings.

3. Answer any one question:

1×10

- (a) (i) Define the two lines of regression.
 - (ii) Obtain the angle between the two lines of regression.

4+6

(b) Derive the Spearman's Rank correlation based on two sets of individuals for tied case.