Full Marks: 40

1.

2019

B.Sc. (Honours)

3rd Semester Examination

STATISTICS

Paper - GE 3-T

(Basics of Statistical Inference)

The figures in the margin indicate full marks.

Candidates are required to give their answers

in their own words as far as practiable.

Ans	2×5=10	
(a)	Define parameter and statistic.	2
(b)	Define Type I and Type II errors.	2
(c)	What do you mean by local control?	2
(d)	Write some properties of X ² -distribution	on. 2

(e) Define the terms: size and level of significance.

[Turn Over]

2

Time: 2 Hours

- (f) Give the definitions of an unbiased estimator and a consistent estimator.
- (g) What is the difference between parametric and non-parametric tests?

2

5

- (h) What is p-value?
- 2. Answer any *four* questions : $5\times4=20$
 - (a) Describe the test for significance of correlation coefficient. 5
 - (b) Let X₁ X₂, ..., X_n be a random sample of size n drawn from a normal distribution with unknown mean μ and unknown variance σ². Obtain an exact test for the mean of the normal population.
 5
 - (c) Describe the sign test.
 - (d) Find the maximum likelihood estimator of θ for a random sample X_1X_2 ..., X_n from a continuous distribution having density function.

$$f_{\theta}(x) = \frac{1}{\theta} e^{-x/\theta}, \ \theta > 0, \ x > 0.$$

(e)	Describe	three	basic	principles	of	design	of
	experiments. Also state			the differen	nt a	ssumptic	ons
	in ANOVA.			3+2=			

- (f) Let X_1 X_2 ..., X_m and Y_1 Y_2 ..., Y_n be two independent random samples drawn from $N(\mu_1, \sigma_1^2)$ and $N(\mu_2, \sigma_2^2)$, respectively, where μ_1 and μ_2 are known. Obtain 95% confidence interval for σ_1^2/σ_2^2 .
- 3. Answer any one question:

 $10 \times 1 = 10$

- (a) Give the layout and analysis of randomized block design.
- (b) Describe Wilcoxon two sample test. 10