2019

B.Sc.

1st Semester Examination

STATISTICS (Honours)

Paper - C 2-T

(Probability and Probability Distributors - 1)

Full Marks: 40

Time: 2 Hours

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

1. Answer any five questions:

5×2=10

- (i) In a bridge party what is the probability that two given players N and S together get K aces ? 2
- (ii) You are told that of the four cards drawn form a well shut led pack of cards, two are red and two are black. If you guess all four at randon what is the probability that you get all four right?

[Turn Over]

- (iii) Two dice are thrown r times. Find the probability that each of the sin combinations appears at least.
- (iv) Give the classical definition of probability. 2
- (v) For two events A and B, suppose P(A|B) > P(A), then show that P(B|A) > B.
- (vi) Find the distribution of random variable x with MGF

$$M_x(t) = \frac{1}{216} \left(5 + e^t \right)^3, t \in \mathbb{R}$$

- (vii) Two dice are thrown. Find the espected value of sum of faces.
- (viii) Give the properties of c.d.f of a random variable.
- 2. Answer any four questions. $4\times4=20$
 - (i) Let the events A_1 , A_2 , ... A_n be independent and $p(A_x) = px$. Find the probability p that more of the events Occurs. Shows that

$$p < \exp(-\sum p_x)$$
.

(ii) r distinguishble balls are placed in a n cells. What is the probability that a given cell will contain k balls. Find the limit of the probability

as
$$n \to \infty$$
, $r \to \infty$ and $\frac{r}{n} \to \lambda$, $\lambda > 0$.

- (iii) let n tickets are drawn from N tickets numbered 1, 2...N. Let S denotes the sum of numbers of the tickets drawn. Find E(S) and variance of S.
- (iv) State and prove Bayes' Theorem on probability.
- (v) Prove that the set of all discontinuty points of a distribution function is countable.
- (vi) Show that in a Poisson distribution with unit mean, mean deviation about mean is $\left(\frac{2}{e}\right)$ times the standard deviation.
- 3. Answer any *one* question.

 $1 \times 10 = 10$

 (i) Derive the probability mass function of hypergeometric distribution from suitable tandom experiment. If X is Hypergeometric (N, n, p), then Find E(X) var (x). Also show that

$$\binom{n}{x} \left(p - \frac{x}{N} \right)^x \left(1 - p - \frac{n - x}{N} \right)^{n - x} < P\left(X = x \right)$$

$$<\binom{n}{x}p^x(1-p)^{n-x}\left(1-\frac{n}{N}\right)^{-n}$$

2+4+4=10

- (ii) (a) The events E_1 , E_2 ... E_n mutually exclusive in sample space Ω connected to some random experiment let $E = \bigcup_{i=1}^n E_i$ show that if $P(A|E_i) = P(B|E_i)$, i = 1, ...n, then P(A|E) = P(B|E). Is the result true if $E_1 ... E_n$ are mutually exclusive?
 - (b) Let G & T be texo events in Ω . Show that P(G|T) = P(T|G) holds if and only if P(G) = P(T).

- (c) Let A & B be two evnets in Ω , $P(A) = P_1$, $P(B) = P_2$, $P_1 + P_2 > 1$, show that $P(B|A) \ge 1 \frac{1 p_2}{p_1}$
 - (d) Define conditional probablity and show that if satisfies all the axioms of axiomatic definition of probability. 2

1