2019

B.Sc. (Hons.)

2nd Semester Examination

STATISTICS

Paper—GE2T

Full Marks: 40

Time: 2 Hours

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Group-A

- 1. Answer any five out of eight questions: 5×2=10
 - (a) State Lindberg Levy Central limit Theorem.
 - (b) Give the axiomatic definition of probability.
 - (c) What is the sufficient condition for existance of the expectation of a random variable? Define expectation.
 - (d) Obtain the mean of a poisson distribution with parameter λ .
 - (e) State the chebysher's inequality.

- (f) Suppose P(A) > 0 and P(B) > 0. If A and B are independent, will they be mutually exclusive?
- (g) Mention two important properties of Moment Generating Function.
- (h) What are the drawbacks of the classical definition of probability?

Group-B

- 2. Answer any four out of six questions: 4×5=20
 - (a) State and prove Bayes' Theorem. 2+3
 - (b) A_1 and A_2 are two events related to an experiment E. Given $P(A_1) = \frac{1}{2}$, $P(A_2) = \frac{1}{3}$

and $P(A_1 \cap A_2) = \frac{1}{4}$, determine the following probabilities:

- (a) $P(A_1^C \cup A_2^C)$, (b) $P(A_1^C \cap A_2^C)$,
- (c) $P(A_1^C \cup A_2)$ 2+1+2
- (c) Obtain mean and variance of a binomial distribution with parameters n an p. 2+3
- (d) Determine the mode of a poisson distribution.

- (e) Let $x_1, x_2,, x_n$ be iid random variables with finite mean μ and finite variance σ^2 . Show that $\overline{X}_n \left(= \frac{1}{n} (x_1 + x_2 + + x_n) \right)$ converges in probability to μ .
- (f) Show that all odd order central moments of normal distribution vanish.

Group-C

- 3. Answer any one out of two questions: 1×10=10
 - (a) (i) Obtain the moment generating function of a poisson distribution with paramater θ .
 - (ii) Find the mean and variance of the following continuous distribution:

$$f(x) = \alpha \cdot e^{-\alpha x}$$
; $x \ge 0$ and $\alpha > 0$. 5+5

- (b) (i) Show that the sequence of independent Binomial Random variables satisfies the De-Moivers Laplace limit theorem.
 - (ii) Show that conditional probability satisfies all the axioms of probability. 5+5