Total Pages - 7

UG/5th Sem/STAT(H)/T/19

2019

B.Sc. (Honours)

5th Semester Examination

STATISTICS

Paper - DSE-2T

Full Marks: 40

Time: 2 Hours

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Survival Analysis

Group - A

1.	Ans	swer any five out of eight questions:	5×2=10
	(a)	What do you mean by censoring?	2
	(b)	Define mean residual time.	2
	(c)	Derive the hazard function of an exp distribution.	onential 2
	(d)	Why is competing risk analysis done?	2
	[Turn Over]		

(f) If f(t) denotes p.d.f. of lifetime distribution of an item and r(t) denotes its hazard rate at time t,

$$t \ge 0$$
 then show that $f(t) = r(t) e^{-\int_{0}^{t} r(t')dt'}$.

Group - C

- 3. Answer any one out of two questions: 1×10=10
 - (a) How can you estimate the mean survival time based on a Type I censored data from an exponential distribution? Also derive the variance of the estimator.
 - (b) Describe the method of maximum likelihood estimation of the probability of death under competing events. Why can Kaplan-Meier method not be used for this estimation? 6+4

5

Stochastic Processes and Queuing Theory

Full Marks: 40 Time: 2 Hot	ırs
1. Answer any <i>five</i> questions: 5×2=	=10
(a) What do you mean by a stationary or tir homogeneous stochastic process?	ne- 2
(b) When a Markov chain is said to be irreducib	ole? 2
(c) What is an absorbing state?	2
(d) When is a state called persistent and transien	nt ? 2
(e) What is a homogeneous Markov chain of first order?	the 2
(f) When is a counting process said to be a Poist process?	son 2
(g) Differentiate inter-arrival times and the wait time until the <i>n</i> th event.	ing 2
(h) What is a non-stationary Poisson process?	2

2. Answer any four questions:

 $4 \times 5 = 20$

(a) Consider a Markov chain with two states, E₁
and E₂, and transition probability matrix

$$\begin{pmatrix} p & 1-p \\ 1-p & p \end{pmatrix}$$

where 0 .

Determine the *n*-step transition probabilities $p_{ij}^{(n)}$ 5

(b) Let $\{X_i(t), t \ge 0\}$, for i = 1, 2, be two independent Poisson processes with rates λ_i . Show that if $X(t) = X_1(t) + X_2(t)$, then $\{X(t), t \ge 0\}$ is also a Poisson process with rate $\lambda_1 + \lambda_2$.

(c) For a Poisson process, show that if s < t, then

$$P[X(s) = k/X(t) = n] = {n \choose k} \left(\frac{s}{t}\right)^{k} \left(1 - \frac{s}{t}\right)^{n-k},$$

k = 0, 1, 2, ..., n.

- (d) For a birth-and-death process show that if initially the population has i members, then the mean size of the population at time t is i exp [(n-μ)t], where each member gives birth at an exponential rate λ and each dies independently of the other members at an exponential rate μ.
- (e) Suppose illegal immigration to India occurs at a Poisson rate of 8 per week (say). The probability that an illegal immigrant is Bengali speaking is 1/6. Find the probability that no Bengali-speaking illegal immigrant will arrive in India during a period of 14 days.
- (f) Describe a population growth model. 5

3.	Ans	swer any one question:	1×10=10	
	(a)	Show that for a Poisson process {X	$(t), t \ge 0$	
		having rate $\lambda > 0$, the inter-arrival (n = 1, 2,) are iid exponentia	700	
		variables with mean $\frac{1}{\lambda}$. Also show	v that the	
		waiting time until the nth event has the	ne gamma	
	distribution with scale parameter λ and sha			
		parameter n.	•	
		F.m.m.rooz ///	6+4=10	
(b) Define the following processes:				
		(i) Pure birth process	3	
		(ii) A single-server queuing system (an M/M/I	
		queue)	3	
		(iii) Markov Chain	2	
		(iv) Yule-Fury Process	2	