2019

B.Sc. (Honours)

5th Semester Examination

STATISTICS

Paper - DSE 2-P

Stochastic Processes and Queuing Theory

Full Marks: 20 Time: 3 Hours

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Answer all questions

1. Show that the Markov chain with states $\{E_1, E_2, E_3\}$ and the transition probability matrix

$$P = \begin{pmatrix} 0.6 & 0.4 & 0 \\ 0 & 0.5 & 0.5 \\ 0.2 & 0.4 & 0.4 \end{pmatrix}$$
 is irreducible.

[Turn Over]

 Consider the following transition probability matrix concerning the two-plate Markov chain about weather conditions — '0' if it rains and '1' if it does not:

$$P = \begin{pmatrix} 0.6 & 0.4 \\ 0.4 & 0.6 \end{pmatrix}.$$

Compute the probability that it will rain five days from today given that it is raining today.

- 3. Suppose that immigration into a country occurs at a poisson rate of 2 per day.
 - (i) What is the probability that the time elapsing between the 4th and 5th immigrations exceeds 3 days?
 - (ii) What is the expected time of the arrival of the 4th immigrant? 2+3=5
- 4. Laboratory Note Book. 2
- 5. Viva-voce.

Survival Analysis

Full Marks: 20 Time: 2 Hours

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Answer all questions

1. The following table gives the remission times for 2 groups of leukemia patients one given the drug 6 mp and the other a placebo.

Calculate the Kaplan Meier estimates of the survival functions for the two groups and plot on a graph paper.

Length of remissions in weeks

6 mp	Placebo
6	1
6	1
6	2
6*	2
7	3
9*	4
10	4

[Turn Over]

10*	5
11*	5
13	8
16	8
17*	8
19*	8
20*	11
22	11
23	12
25*	12
32*	15
32*	17
34*	22
35*	23

*quantities denote censored observations.

8

2. Plot the failure rate (or hazard rate) function of a system having failure time distribution with p.d.f.

$$f(x) = 2.7t^2e - 0.9t^3$$
; $t \ge 0$

Also find the value of the survival function of the system for a mission time of 0.15 unit.

1	_	1
(1	- 1
l	-	•

3. Laboratory Note Book.	3
4. Viva-voce.	2
T.	

6/52-600