UG/5th Sem/STAT(H)/T/19

2019

B.Sc. (Hons)

5th Semester Examination

STATISTICS

Paper - DSE 1-T

Full Marks: 40

Time: 2 Hours

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Statistical Quality Control

Group - A

1. Answer any five out of eight questions: $5 \times 2 = 1$	0
(a) What do you mean by statistical quality control	1? 2
(b) Define a control chart.	2
(c) Distinguish between a defect and a defective.	2
(d) Define Acceptance Quality Level (AQL).	2
[Turn Over	r J

(e) Distinguish between Proceedings (e) Consumer's risk.	roducer's risk and
(f) When is a c-chart used?	2
(g) Briefly describe six sigma.	2
(h) What do you mean by a plan?	sampling inspection
Group - B	
2. Answer any four out of six que	estions: 4×5=20
(a) Define Operating Character a sampling inspection p compare two sampling plans OC curves ?	lan. How can one
(b) Distinguish between process control. As a producer, discr would you prefer ?	
(c) If you are provided wit deviations and ranges of the at regular intervals of time, them to comment on the pr	e items manufactured , how do you utilise
(d) Discuss on chance causes a of variation in quality of a m	

- (e) Describe how you will construct a control chart for number of defectives contained in product lots.
- (f) What do you mean by a rational subgroup? What are the main considerations for the formation of such groups? 2+3

Group - C

- 3. Answer any *one* out of two questions: $1 \times 10=10$
 - (a) Describe single sampling inspection plans by attribute. Derive the expressions for average sample number (ASN) and average outgoing quality (AOQ) for such sampling plans. 2+4+4
 - (b) In a certain manufacturing process, the proportion of defective electric bulbs in m samples each consisting of n bulbs are observed at regular intervals of time. Use the data to set up an appropriate control chart for the process.

6

How will you modify the control chart when the samples are not of equal size?

4

Econometrics

Full Mark	s:40	Time: 2 Hours	3
1. An	swer any five questions:	2×5=10)
(a)	Show that if r is the combetween n pairs of values correlation coefficient between t b, t c t constants, is also t .	(X_i, Y_i) , then the en the <i>n</i> pairs (aX)	e
(b)	If the sample values of x in t	he linear model	
	$Y_i = \alpha + \beta X_i + \epsilon_i$		
	have zero mean, show that the least square estimates of α		
(c)	What are the assumptions regression model ?	in multiple linear	
(d)	Show that the simple linear pass through the point of me		
(e)	Show that the residuals have a the sample X values.	zero covariance with	
(f)	What is multi collinearity?	2	50 - 1000 1000
(g)	What is auto correlation?	2	A Spenso

- (h) Show that the ML estimator of σ^2 in regression model is consistent.
- 2. Answer any four questions:

 $5 \times 4 = 20$

(a) A model is specified as $Y_t = \delta Y_{t-1} + u_t$, $|\delta| < 1$

$$u_t = \in_t + \alpha \in_{t-1}$$

Obtain an estimate of δ .

5

(b) Suppose a model is specified as $Y = X \beta + U$ with $u_t = \phi u_{t-1} + \epsilon_t$

Describe a test for zero autocorrelation. 5

- (c) Suppose a model for the linear effect of fertilizer on yield is specified as Y_{ij} = α + βX_i + u_{ij}, i=1, 2,, m (m>1), j=1, 2,, n_i (n_i>2)
 with E(u_i) = 0 and E(u_i u'_i) = σ_i²I_{n_i}, i=(u)_m. Obtain a test for the equality of variances.
- (d) What are the consequences of autocorrelated disturbances?

[Turn Over]

- (e) Describe a diagnostic tool for detecting multicollinearity.
- (f) In the regression equation

$$y_t = \beta x_{1t} + \gamma x_{2t} + u_t$$
, $t = 1, 2, ..., n$

all variables are expressed as deviations from their sample means.

Obtain estimates of β and γ .

5

3. Answer any one question:

 $10 \times 1 = 10$

(a) Consider a multiple regression model for which all classical assumptions hold, but in which there is no constant term. Test the null hypothesis that there is no relationship between <u>y</u> and <u>x</u>, that is,

$$H_0: \beta_2 = \beta_3 = = \beta_k = 0$$

against the alternative that at least one of the β 's is non-zero.

(b) Consider a heteroscedastic model (for which all other classical assumptions hold)

$$Y_{ij} = \alpha + \beta X_i + u_{ij},$$
 $i = 1, 2, ..., m \ (m > 1)$
 $j = 1, 2, ..., n_i \ (n_i > 2).$

Suppose $var(u_{ij}) = \sigma_i^2$. Obtain an estimator of σ_i^2 and verify its unbiasedness. 5+5=10