4

2019

B.Sc. (Hons.)

2nd Semester Examination

STATISTICS

Paper—C3T

Full Marks: 60

Time: 3 Hours

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Mathematical Analysis

1. Answer any ten questions:

10×2

- (a) Prove that the sequence $\{1 + (-1)^n\}$ is neither convergent nor divergent.
- (b) Show that the set of all integers Z is countable.
- (c) Show that the sequence

$$\left\{\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+n}\right\}$$
 is strictly monotonic increasing and bounded.

(d) If f'(x) > 0 in [a, b], prove that f(x) is increasing in [a, b].

- (e) Prove that for $0 < x < \frac{\pi}{2}$, $\frac{\sin x}{x}$ decreases.
- (f) Given $f(x) = \begin{cases} 0, & \text{if } x \ge 0 \\ x^n, & \text{if } x < 0, \text{ where n is a + ve} \end{cases}$ integer. For what values of n, f(x) is differentiable for all values of x?
- (g) Give geometric interpretation of Lagrange's MVT.
- (h) Show that the set Q of rational numbers is not order complete.
- State the order Axioms of the set R of real numbers.
- (j) Define the least upper bound of a bounded set and obtain it for the set

$$A = \left\{ \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots, \frac{n}{n+1}, \dots \right\}.$$

- (k) Define an absolutely convergent series and a conditionally convergent series. Give one example for each.
- (1) Prove that $\lim_{x\to a} f(x)$, when exists, is unique.
- (m) Give an example to show that a function which is continuous in only an open interval, may not be bounded there.

- (n) A function f is defined in (0, 2) by f(x) = x [x], prove that f is not continuous at x = 1.
- (o) If φ(x) be a polynomial in x and λ is a real number, then prove that ∃ a root of φ'(x) + λφ(x) = 0 between any pair of roots of φ(x) = 0.
- 2. Answer any four questions:

4×5=20

- (a) (i) If S be a bounded set of real numbers, then prove that the set T = {-x : x ∈ S} is also bounded and Sup T = inf S and inf T = Sup S.
 - (ii) Verify that the harmonic sequence $\left\{\frac{1}{n}\right\}$ converges to 0. (4+1)
- (b) State Cauchy's Root test for convergence or divergence of a series of positive terms. Use

it to prove that $\sum_{n=1}^{\infty} \frac{1}{2^{n+(-1)^n}}$ is convergent.

(c) State Leibnitz's theorem on successive derivatives. Use it to show that if $y = \tan^{-1}x$, then $(1 + x^2) y_{n+2} + 2(n+1) xy_{n+1} + n(n+1)y_n = 0$. (1+4)

(d) (i) Find a, b such that

$$\lim_{x \to 0} \frac{x(1 + a\cos x) - b\sin x}{x^3} = 1$$
If $u = \log r$ and $r^2 = x^2 + y^2 + x^2$, prov

(ii) If $u = \log r$ and $r^2 = x^2 + y^2 + x^2$, prove that $r^2 (u_{xx} + u_{yy} + u_{zz}) = 1$. (3+2)

(e) Examine the convergence of $\int_{0}^{1} \frac{x^{n-1}}{1-x} dx$.

(f) (i) Express $\int_{a}^{b} (x-a)^{m} (b-x)^{n} dx$ in terms of Beta function.

(ii) Find the value of
$$\int_{0}^{\infty} e^{-x^2} dx$$
. (3+2)

2×10

0

Answer any two questions:

(a) (i) If
$$f(h) = f(0) + hf'(0) + \frac{h^2}{2!}f''(\theta h)$$
,
 $0 < \theta < 1$, find θ , when $h = 1$ and $f(x) = (1-x)^{5/2}$.

(ii) Consider the function f defined by $f(x,y) = \begin{cases} \frac{x^2y^2}{x^2 + y^2}, & \text{when } x^2 + y^2 \neq 0\\ 0, & \text{when } x = 0, y = 0 \end{cases}$

Show that $f_{xy}(0, 0) = f_{yx}(0, 0)$. Also show that $f_{xy}(x, y)$ and $f_{yx}(x, y)$ are not continuous at (0, 0). (4+6)

- (b) (i) Examine for extreme values for the function $f(x, y) = x^3 + 3x^2 + y^2 + 4xy$.
 - (ii) Examine the existence of maxima, or minima of the function f(x, y) = xy subject to the condition 5x + y = 13. (5+5)
- (c) (i) Show that $\iint_{R} \sqrt{4a^2 x^2 y^2} dx dy$ $= \frac{4}{9} (3\pi 4)a^3, \text{ where R is the upper half}$ of the circle $x^2 + y^2 2ax = 0$.

(ii) Prove that
$$\int_{0}^{1} \frac{\log(1+x)}{1+x^{2}} dx = \frac{\pi}{8} \log 2.$$
 (6+4)