Total Pages-4

2018

2nd Semester

PHYSICS

PAPER-C3T

(Honours)

Full Marks: 40

Time: 2 Hours

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Group-A

Answer any five questions.

5×2

- 1. Find the expression of mutual potential energy between two coplanar dipoles.
- 2. If the electrostatic potential is given by $\phi = \phi_0(x^2 + y^2 + z^2)$, where ϕ_0 is constant. Find the volume density of charge.
- 3. A sphere of radius 'a' has uniform charge density ρ . Find the electric flux density \overrightarrow{D} for r > a.

4. A conducting sphere of radius R is placed in a uniform electric field $\overrightarrow{E_0}$ directed along +z axis. The electric potential for outside point is given as

 $V=-E_0\left(1-\frac{R^3}{r^3}\right)r\cos\theta$, where r is the distance from the centre and θ is the polar angle. Find the charge density on the surface of the sphere.

- 5. Evaluate $\oint \vec{A} \cdot \vec{dl}$ along a square loop of side L in a uniform field \vec{A} .
- 6. Prove that $\mu_r = 1 + \chi_m$ where the symbols have usual meanings.
- 7. A capacitor (parallel plate) is being charged at a constant rate $\frac{dq}{dt} = b$. If A is the area of the plates and d is separation between them, find the displacement current.
- 8. Calculate the r.m.s. value of the current $i = I_0 + I_1 \cos(wt + \theta)$.

Group-B

Answer any five questions.

5x4

9. A complex voltage (10 + j) volt is applied to a series LR circuit of complex impedance $(\sqrt{3} + j)\Omega$ Calculate the power factor and power consumed by the circuit.

Calculate the total impedance between the point A and B.

- 11. Consider a plane interface of two media of permeability μ_1 and μ_2 . If the \overrightarrow{B} -fields on either side make angles θ_1 and θ_2 with the normal to the interface show that $\mu_1 \cot \theta_1 = \mu_2 \cot \theta_2$.
- 12. A long cylinder of radius 'a' carries a magnetization $\vec{M} = \kappa r^2 \hat{\theta}$, where κ is a constant, r is the distance from the axis. Find the magnetic field due to \vec{M} both inside and outside the cylinder.
 - 13. A long non-magnetic hollow cylinder carrying a current I. The inner and outer radii of the cylinder are a and b respectively. Find the magnetic field as a function of

radial distance (i) within the material of the conductor (a < r < b). (ii) outside the conductor (r > b).

14. Derive an expression for the force on a dipole placed in a nonuniform magnetic field.

Group-C

Answer any one question.

1×10

- 15. (a) A conducting shell of radius R is rotating about z-axis with angular velocity w in a uniform magnetic field B also in the z-direction. What is the potential difference between the pole and equator of the shell?
 - (b) Show that the flux of the field vector \overrightarrow{B} is continuous everywhere. Is it so for the vector \overrightarrow{H} ? 5+5
- 16. (a) Three point charges q, q, -2q are located at (0, -a, a), (0,a,a) and (0,0,-a) respectively. Find the net dipole moment of this charge distribution.
 - (b) Find the work done is bringing a charge +q from infinity in free space to a position at a distance d in front of a gemi-infinite grounded metal surface.

 5+5