2018

2nd Semester

PHYSICS

PAPER-GE2T

(Generic Elective)

Full Marks: 40

Time: 2 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Group-A

1. Answer any five questions.

 5×2

1	(a)	State third law of thermodynamics.	2
1	(b)	Show that entropy remains constant in	a reversible
i		process.	2

(c) Define Joule-Thomson coefficient. Write down expression for inversion temperature for Vander Walls gas.

- (d) If the degrees of freedom of a molecule of a gas is n, show that the ratio of its two specific heats is given by $\gamma = c_p/c_v = 1 + 2/n$.
- (e) Which distribution law obeys a photon and a molecule of an ideal gas.
- (f) Explain how viscosity of a gas depends on its temperature.
- (g) Find the dimension of Stefan Constant (σ).
- (h) Distinguish between microstate and macrostate of a system.

Group-B

2. Answer any four questions.

 4×5

- (a) (i) What do you mean by enthalpy?
 - (ii) Show that $TdS = CvdT + T\left(\frac{\partial P}{\partial T}\right)_{v} dv$ 2+3
- (b) Derive the Wien's law, Rayleigh-Jean's law and Stefan-Boltzmann's law from Planck's law for blackbody radiation.
 5

- (c) (i) Write down the importance of the laws of thermodynamics.
 - (ii) Show that the work done by a perfect gas undergoing adiabatic change is $(P_1V_1 P_2V_2)/(\gamma 1).$ 2+3
- (d) (i) A Carnot's engine working between 17°C and 147°C is supplied with 20,000 calorie of heat. How many joules of work will the engine be able to do?
 - (ii) What is statistical equilibrium? 3+2
- (e) Describe different steps of Carnot's heat engine.

 Derive expression for its efficiency. 2+3
- (f) Using T-dS equations prove that

 $C_p - C_v = T \left(\frac{\partial V}{\partial T} \right)_p \left(\frac{\partial P}{\partial T} \right)_V$, Symbols have their usual

meaning. Hence for ideal gas (1-mole), Prove that C_p - C_v = R.

(g) From kinetic theory gas prove that the coefficient of viscosity of a gas is $\eta = \frac{1}{3} m n \tilde{c} \lambda$, the symbols have their usual meaning.

 (h) Write down expressions for Bose-Einstein and Fermi-Dirac distribution functions.

Group-C

Answer any one question.

 1×10

- 3. (a) (i) Show that Maxwell's speed distribution law will be independent of temperature if most Probable speed is taken as measuring speed.
 - (ii) Using Maxwell's speed distribution law, derive expression for average speed of gas molecules.
 - (iii) Find the fraction of oxygen molecules whose speed lies between 100 m/s and 110 m/s at 27°C.

3+3+4

- (b) (i) Derive Clausius-Clapeyron equation from Maxwell's Thermodynamic relation.
 - (ii) A certain black body with a surface area of $2\times10^{-5} \text{cm}^2$ has a constant temperature of 1000 k. What is the total power radiated by the blackbody? Given $\sigma = 5.67 \times 10^{-5}$ CGS unit.

(iii) An ideal gas has N no. of molecule at T temperature and obey by M-B statistics.

Determine the internal energy and the specific heat at constant volume of the gas. 4+3+3

বঙ্গানুবাদ

पिकिंग थाउँ सःখ्याः छलि श्रभ्यानं निर्पर्गक।

পরীক্ষার্থীদের যথাসম্ভব নিজের ভাষায় উত্তর দেওয়া প্রয়োজন।

বিভাগ—ক

51	যে বে	গন <i>পাঁচটি</i> প্রশ্নের উত্তর দাও।	৫×২
	(ক)	তাপগতিবিদ্যার তৃতীয় সূত্রটি বিবৃত কর।	২
	(খ)	দেখাও যে, প্রত্যাবর্তন প্রক্রিয়ায় এনট্রপি স্থির থাকে।	.
8	(গ)	জুল-টমসন গুণাঙ্কের সংজ্ঞা লেখ। ভ্যানডার ওয়াল গ্যাসের ^র	উৎক্রম
	i r	তাপমাত্রার রাশিমালা লেখ।	
j=	(ঘ)	কোনো গ্যাসের অণর স্বাধীনতার মাত্রা n হলে, দেখাও যে ত	ার দুটি

(৬) একটি ফোটন ও একটি আদর্শ গ্যাসের একটি অণু কোন্ কোন্ বল্টন সূত্র মেনে চলে ?

আপেক্ষিক তাপের অনুপাত $\gamma = C_p/C_v = 1 + 2/n$.

- (চ) কোন গ্যাসের সাত্রতান্ধ তাপমাত্রার ওপর কিভাবে নির্ভরশীল তা ব্যাখ্যা কর।
- (ছ) স্টিফান-ধ্রুবকের মাত্রা নির্ণয় কর।
- (জ) একটি তন্ত্রের মাইক্রোস্টেট ও ম্যাক্রোস্টেটের মধ্যে পার্থক্য লেখ।

বিভাগ—খ

২। যে কোনো *চারটি* প্রশ্নের উত্তর দাও :

8×¢

- (ক) (i) এন্থ্যালপি বলতে তুমি কি বোঝ ?
 - (ii) দেখাও যে, $Td \sim = CvdT + T\left(\frac{\partial P}{\partial T}\right)_v \cdot dv$.
 - (খ) কৃষ্ণবস্তু বিকিরণের ক্ষেত্রে ভীনের সূত্র, র্যালে-জীনস্-এর সূত্র এবং স্টীফ্যান্-বোনজ্ম্যানের সূত্র প্ল্যাংক্ষের সূত্র থেকে প্রতিষ্ঠা কর। ৫
- (গ) (i) তাপগতিবিদ্যার সূত্রগুলির গুরুত্ব লেখ।
 - (ii) কোন আর্দশ গ্যাসের রাদ্ধতাপ পরিবর্তন সংঘটিত হলে প্রমাণ কর যে, কৃতকার্য হয় $(P_1V_1-P_2V_2)/(\gamma-1)$. ২+৩
- (ঘ) (i) 17°C এবং 147°C উচ্চতাদ্বরের মধ্যে কার্যরত একটি কার্নো। ইঞ্জিনে 20,000 ক্যালোরি তাপ সরবরাহ করা হল। ইঞ্জিনটি কত জুল উপযোগী কার্য করতে সক্ষম হবে?
 - (ii) পারিসাংখ্যিক স্থিতাবস্থা কি ?

9+2

- (%) একটি কার্নো বিভিন্ন ধাপগুলি বর্ণনা কর। এর দক্ষতার রাশিমালা নির্ণয় কর?
- (\mathfrak{b}) |T-ds সমীকরণগুলি ব্যবহার করে দেখাও যে, $C_p-C_v=T\left(rac{\partial V}{\partial T}\right)_p\left(rac{\partial P}{\partial T}\right)_V$ চিহ্নগুলি প্রচলিত অর্থবহ। এ থেকে একমোল আর্দশ গ্যাসের ক্ষেত্রে প্রমাণ কর $C_p-C_V=R$. 8+5
- (ছ) গ্যাসের গ্যাসীয়তত্ত্ব থেকে প্রমাণ কর যে গ্যাসের সান্দ্রতাঙ্কের রাশিমালা $\eta = \frac{1}{3} \, mn \, \overline{c} \lambda, \, \, \, \overline{b} হুগুলি প্রচলিত অর্থবহ।$ α
- (জ) বোস-আইনস্টাইন এবং ফেরমি-ডিরাকের বণ্টন সূত্র দুটি লেখ। ৫

বিভাগ—গ

৩। যে কোনো *একটি* প্রশ্নের উত্তর দাও।

>x>0

- (क) (i) দেখাও যে, ম্যাক্সওয়েলের বেগ বণ্টনের সূত্রটি তাপমাত্রা নিরপেক্ষ হবে যদি অধিকতর সম্ভাব্য বেগকে—বেগ পরিমাপের একক হিসেবে ধরা হয়।
 - (ii) ম্যাক্সওয়েলের গতিণ্টন সূত্রটি প্রয়োগ করে গ্যাসের অণুগুলির গড়বেগের রাশিমালা প্রতিষ্ঠা কর।

- (iii) 27°C উষ্ণতায় অক্সিজেন গ্যাসের অণুগুলির সেই ভগ্নাংশ নির্ণয় কর যাদের বেগ 100 m/s থেকে 110 m/s-এর মধ্যবর্তী। ৩+৩+৪
- (খ) (i) ম্যাক্সওয়েলের তাপগতিবিদ্যার সম্পর্ক থেকে ক্লাসিয়াস-ক্রেপেরন সমীকরণটি প্রতিষ্ঠা কর।
 - (ii) একটি 2×10⁻⁵ cm² ক্ষেত্রফল সম্পন্ন কৃষ্ণবস্তু 1000 k উষ্ণতায় কতটা তাপশক্তি প্রতি সেকেন্ডে বিকিরণ করবে তা বাহির কর। কত উষ্ণতায় কৃষ্ণবস্তুটি দ্বিগুণ তাপশক্তি বিকিরণ করবে? দেওয়া আছে, σ = 5.67 × 10⁻⁵ সিজিএস একক।
 - (iii) M-B পরিসংখ্যা মেনে চলে এরূপ একটি আর্দশগ্যাসে T উঞ্চতায়
 N সংখ্যক অণু আছে। গ্যাসের অভ্যন্তরীণ শক্তি এবং স্থির আয়তনে
 আপেক্ষিক তাপ নির্ণয় কর। 8+৩+৩