2018

CBCS

1st Semester

PHYSICS

PAPER-GE1T

(Honours)

Full Marks: 40

Time: 2 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Elements of Modern Physics

Group-A .

Answer any five questions:

 5×2

1. What is Compton Effect? Explain why Compton effect is not observed for visible light rays?

- 2. The wavelength of the first Balmer line in hydrogen spectrum is 6563 Å. Find the Wave length of the first line of the Lyman series.
- 3. For Copper irradiated by light of wave length 1849 Å stopping potential is 2.72 V. Calculate the work function and threshold frequency.
- 4. An x-rays of wave length 0.09 Å are scattered from a carbon block at an angle 54°. Find the (a) Compton shift of wavelength (b) Wavelength of the scattered beam.
- 5. Explain what do you mean by matter waves. What is the expression of its wavelength?
- 6. Calculate the uncertainty in the momentum of a proton confined in a box of length 1 Å [mass of proton = $1.67 \times 10^{-27} \text{ kg}$]
- 7. Normalise the wave function $\psi(x) = A \sin\left(\frac{n\pi x}{L}\right)$.
- 8. What do you mean by eigen function and eigen value?

.

Group-B

Answer any four questions:

	ı	8			
9.	(a)	Why Balmer series in absorption spectra cannot be			
	· L	formed?			
	j				
	(b)	Calculate the series limit for (i) Lyman series and			
		(ii) Balmer series.			
	i				
10.	(a)	Derive the relation between half life and radio active			
		constant.			
	ł				
	(b)	1.0 gm of a radio active substance takes 91 days to			
	ĭ	lose 0.9 gm. Calculate the half-life and the mean-life			
	i	of the substance.			
	İ	of the substance.			
11.	Wh	at are the difficulties in explaining photo-electric			
	effect with the electromagnetic theory of light? How did				
	Einstein explained all the observed facts for this effect?				
		2+3			

4×5

Draw a curve showing the variation of binding energy			
per nucleon against the mass number. Use this	s curve		
to explain the release of energy in fusion of	of light		
nuclei and fission of heavy nuclei	1+2		
	per nucleon against the mass number. Use this to explain the release of energy in fusion of		

- (b) Calculate the binding energy per nucleon in ${}_{6}C^{12}$.

 Given: mass of proton = 1.00728 amu mass of neutron = 1.00867 amu mass of electron = 0.00055 amu and mass of ${}_{6}C^{12}$ atom = 12 amu 2
- 13. Describe Davison-Germer experiment to demonstrate the wave nature of electron.
- 14. (a) State the time-energy uncertainty relation and obtain it from position—Momentum uncertainty relation.
 1+2
 - (b) In an experiment, an elementary particle is observed at intervals as short as 10⁻⁷ sec. Find minimum uncertainty in energy of the particle.

.

Group-C

<i>10</i>	Answer any one questions: 1×10		
(a)	Establish Bohr's quantisation for hydrogen spectra of the basis of de-Broglie concept of matter waves.		
(b)	What do you mean by a chain reaction? Explain the function of moderator in a nuclear reactor. 2+2		
(c)	How much energy will be released if all the atoms of 1 kg of U ²³⁵ are fissioned?		
16. (a) Write down the Schrodinger time-dependent eq and obtain time independent equation from i			
(b)	What is the physical significance of the way function?		
(c)	An object is moving in one dimension is described b		
	a wave function $\psi(x) = Nx$, $(0 < x < 1)$. (i) Find N by normalising the wave function		
L	(ii) What is the probability of finding the object		
	within the interval $\left(0,\frac{1}{2}\right)$?		
	(b) (c) (a)		

বঙ্গানুবাদ

বিভাগ-ক

যে কোনো *পাঁচটি* প্রশ্নের উত্তর দাও।

&XX

- ১। কম্পটন ক্রিয়া বলতে কী বোঝং দৃশ্যমান আলোর ক্ষেত্রে এই ক্রিয়া দেখা যায় না কেন?
- ২। হাইড্রোজেন প্রমাণুর বর্ণালীতে বামার শ্রেণীর প্রথম রেখার তরঙ্গ দৈর্ঘ্য 6563 Å। একই বর্ণালীতে লাইম্যান শ্রেণীর প্রথম রেখার তরঙ্গ দৈর্ঘ্যের মান নির্ণয় কর।
- ৩। 1849 À তরঙ্গ দৈর্ঘ্যের আলোকের জন্য তামার নিবৃত্তি বিভভ 2.72V। কার্য অপেক্ষক ও প্রারম্ভ কম্পান্ধ নির্ণয় কর ?
- 8। 0.09 Å তরঙ্গ দৈর্ঘ্যের একবর্ণী X-রশ্মি একটি কার্বন ব্লুকের উপর ফেলা হল। X-রশ্মির বিক্ষেপ কোণ 54° হলে নির্ণয় কর। (ক) কম্পটন তরঙ্গ দৈর্ঘ্যের পরিবর্তন (খ) বিক্ষিপ্ত রশ্মির তরঙ্গ দৈর্ঘ্য।
- ৫। বস্তু তরঙ্গ বলতে কি বোঝ? এর তরঙ্গ দৈর্ঘ্যের রাশিমালাটি লেখ।
- ৬। একটি প্রোটনের অবস্থান 1 Å পাল্লার মধ্যে পরিমাপ করা গেলে প্রোটনের ভরবেগ পরিমাপে অনিশ্চয়তা কত? [প্রোটনের ভর = $1\cdot67 \times 10^{-27}~{
 m kg}$]
- ৭। $\psi(x) = A \sin\left(\frac{n\pi x}{L}\right)$ তরঙ্গ অপেক্ষকটিকে পরিমিত করণ কর।
- ৮। আইগেন ফলন ও আইগেন মান বলতে কী বোঝায়?

যে কোনো <i>চারটি</i> প্রশ্নের উত্তর দা
--

8XC

৯। (ক) শোষণ বর্ণালীতে কেন বামার শ্রেণী থাকে না?

Ó

(খ) লাইম্যান ও বামার শ্রেণীর শ্রেণী সীমা নির্ণয় কর।

Ą

- ১০। (ক) অর্ধায়ু বলতে কি বোঝায়? এর সাথে ভাঙন ধ্রুবকের সম্পর্ক নির্ণয় কর।

 ু ধ্রুবকের সম্পর্ক নির্ণয় কর।
 - (খ) একটি তেজস্ক্রিয় বস্তুতে মৌলের পরিমাণ 1 0 gm 91 দিন পর ইহার বিঘটিত হয়। এই মৌলের অর্ধায়ু এবং পড় আয়ু নির্ণয় কর। ২
- ১১। আলোক তড়িৎ ক্রিয়া তড়িৎ চুম্বকীয় তত্ত্ব দ্বারা ব্যাখ্যা করা যায় না কেন? আইনস্টাইন আলোক তড়িৎ সম্পর্কিত ঘটনাগুলি কীভাবে ব্যাখ্যা করেছিলেন? ২+৩
 - ২২। (ক) বন্ধন শক্তি প্রতি নিউক্লিয়ন-এর সাথে ভর সংখ্যার লেখচিত্রটি অঙ্কন কর।
 ইহা ইইতে ফিউসন ও ফিশন ক্রিয়ার ব্যাখ্যা কর।
 - (খ) ${}_6C^{12}$ -এর বন্ধন শক্তি প্রতি নিউক্লিয়ন নির্ণয় কর।

দেওয়া আছে :প্রোটনের ভর = 1.00728 amu

নিউট্রনের ভর = 1.00867 amu

ইলেকট্রনের ভর = 0.00055 amu

এবং $_{6}C^{12}$ প্রমাণুর ভর = 12 amu

১৩। ইলেকট্রন ব্যবর্তন সম্পর্কিত ডেডিসন এবং গার্মারের পরণীক্ষা বর্ণনা কর। ৫

184	(ক) শক্তি ও সময়	পরিমাপের অনিশ্চিয়তার	র সম্পর্ক কি?	কণার ভরবেগ ও
		য়াপের সম্পর্ক থেকে ইহা		5+2

্থ) একটি পরীক্ষাতে কোন মৌলিক কণাকে 10⁻⁷ সেকেন্ড সময় দেখা গেছে। কণাটির সবচেয়ে ক্ষুদ্র অনিশ্চিয়তা শক্তি কত হবে নির্ণয় কর। ২

বিভাগ-গ

যেকোনো *একটি* প্রশ্নের উত্তর দাও।

2X50

- ১৫। (ক) দ্য ব্রয় তরঙ্গ তত্ত্ব থেকে হাইড্রোজেন বর্ণালী সম্পর্কিত বোরের কোয়ান্টাম শর্ত প্রতিষ্ঠা কর।
 - (খ) শৃঙ্খল বিক্রিয়া বলতে কী বোঝ? নিউক্লিয় বিক্রিয়ায় মন্দনক কী কাজে ব্যবহার করা হয়—ব্যাখ্যা কর। ২+২
 - (গ) 1 kg U²³⁵ কে সম্পূর্ণ ভাবে বিভাজিত করলে কী পরিমাণ শক্তি উৎপন্ন হয় তা নির্ণয় কর।
- ১৬। (ক) সময়ের উপর নির্ভরশীল স্রডিংগার সমীকরণটি লেখ।ইহা **হইতে সময়ের** উপর নির্ভরশীল নহে এরুপ স্রডিংগার সমীকরণটি প্রতিষ্ঠা কর। ১+৩
 - (খ) তরঙ্গ অপেক্ষকের তাৎপর্য কী?

(গ) কোণ কণার তরঙ্গ অপেক্ষক $\psi(x) = Nx$, (0 < x < 1)

- (i) ইহাকে normalise বারে N-এর মান নির্ণয় কর।
- (ii) কণাটি $\left(0,\frac{1}{2}\right)$ -এর মধ্যে থাকার সম্ভাবনা বের কর।

2+2

2