2018

CBCS

3rd Semester

PHYSICS

PAPER-C7P

(Honours)

(Practical)

Full Marks: 20

Time: 2 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Digital Systems and Applications Lab.

1×15 Write an experiment (any one):

1. Design a NOT gate using transistor and verify the truth table.

5

(a) Theory (b) Showing the result and noting the truth table. 8

2 (c) Results and discussions.

2.	De IC	esign and verify AND, OR, XOR gates using NAND s.	gate		
	(a)	Theory 2+	2+2		
	(b) Noting the truth table and showing the result.				
			2+2		
	(c)	Results and discussions.	3		
3.	Convert the following Boolean expression into logic circuit and design it using logic gate ICs.				
		$y = \sum_{m} (1, 3, 5, 7)$			
	(a)	Theory	6		
	(b)	Showing the result and noting the truth table.	7		
	(c)	Results and discussions.	2		
4.					
	(a)	Theory	6		
	(b)	Showing the result and noting the truth table.	7		
		Results and discussion			
5.			2		
(C=200 = 0	Design an adder subtracter circuit using full adder IC and check both the result of addition and subtraction for 2				
	data set.				
	(a)	Theory	6		
	(b)	Showing the result and noting the truth table.	7		
		Results and discussions.	2		

6.	Design a RS flip-flop using NAND gates and demonstrate the excitation table.				
	(a) Theory	6			
	(b) Showing the result and noting the truth table.	7			
7.	(c) Results and discussions.	2			
	Design a JK flip-flop using NAND gates and demonstrate the excitation table.				
	(a) Theory	6			
	(b) Showing the result and noting the truth table.	7			
	(c) Results and discussions.	2			
8.	 Design a JK Master-slave flip-flop using NAND ga and demonstrate the excitation table. 				
10 10	(a) Theory	6			
1	(b) Showing the result and noting the truth table.	7			
))]	(c) Results and discussions.	2			
9	Design a 4 bit counter using JK flip-flop ICs and stuthe timing diagram.				
	(a) Theory	6			
	(b) Showing the result and noting the truth table.	7			
9	(c) Results and discussions.	2			

(Turn Over)

C/18/BSc/3rd Sem/PHSH/C7P

10	Design a 4 bit shift register SIPO using D-typ flop ICs.			
	(a)	Theory	6	
	(b)	Showing the result and noting the truth table.	7	
	(c)	Results and discussions.	2	
11.		sign a 4 bit shift register PISO using D-type/JK io using ICs.	lip-	
	(a)	Theory	6	
	(b)	Showing the result and noting the truth table.	7	
	(c)	Results and discussions.	2	
12.	sign an astable multivibrator at frequency 10 KHz w 3-rd duty cycle using 555 timer IC.	rith		
	(a)	Theory	6	
	(b)	Showing the result and noting the truth table.	7	
	(c)	Results and discussions.	2	
13.	Des with	sign a monostable multivibrator using 555 timer on ON times 20 sec and 50 secs.	IC	
	(a)	Theory	6	
	(b)	Showing the result and noting the truth table.	7	
	(c)	Results and discussions.	2	

Distribution of Marks: LNB-02; Viva-03; Experiment-15