a 2018

CBCS

3rd Semester

PHYSICS

PAPER—C5T

(Honours)

Full Marks: 40

Time: 2 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Mathematical Physics II

5×2 1. Answer any five quesitons: (a) Prove that $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$ 2

(b) Prove that erf(-x) = -erf(x)(c) Write down the Dirichlet's conditon (Turn Over)

(d)
$$f(x) = -\left(\frac{x}{l}\right) + l$$
 in range $0 \le x \le l$ find a_n .

2

- (e) Find regular singular points of the differential equation $2x^2 \frac{d^2y}{dx^2} + 3x \frac{dy}{dx} + (x^2 4)y = 0$
- (f) A Lagrangian is in the form $L = \left(\frac{1}{2}\alpha\dot{q}^2 \frac{1}{2}\beta q^2\right)$ where α , β are constant. Find Hamiltonian of the system.
- (g) State the type of following PDES

(i)
$$\frac{\partial^2 u}{\partial x^2} - K^2 \frac{\partial^2 u}{\partial y^2} = 0$$

(ii)
$$\frac{\partial^2 u}{\partial x^2} - K \frac{\partial u}{\partial x} = 0$$

2

(h) Explain cyclic co-ordinates.

2

2. Answer any four questions :

4×5

(a) Prove
$$\beta(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$$

- (b) Obtain the complex form of the Fourier series of the function: $f(x) = \begin{cases} 0 & -\pi \le x \le 0 \\ 1 & 0 \le x \le \pi \end{cases}$
- (c) Prove $xJ'_n = nJ_n xJ_{n+1}$, symbols are in usual meaning.
- (d) $L = \frac{1}{2}e^{at}(\dot{x}^2 p^2x^2)$, where p is a constant. Using Lagranges' equation prove that $\ddot{x} + a\dot{x} + p^2x = 0$.
- (e) Using Hamilton's canonical equations, derive the equation of motion of a particle moving in a force field in which the potential is given by $V = -\frac{k}{r}$, where K is prositive.
- (f) Solve the Laplace's equation in the three dimensional cylindrical form.
- 3. Answer any one question :

 1×10

(a) (i) Solve x(x-1)y'' + (3x-1)y' + y = 0 by Frobenius method.

(ii) Prove
$$nP_n = xP'_1 - P'_{n-1}$$
 6+4

- (b) (i) A pendulum with a bob of mass m and length l, is suspended from a massless spring of constant k. The spring has only verticle motion. Find the Lagrangian and Lagranges' equation.
 - (ii) Find the solution of the equation

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \quad \text{in the region} \quad 0 \le x \le a ,$$

 $0 \le y \le \infty$, satisfy the conditions

$$u(0, y) = 0, u(a, y) = 0$$

$$u(x, 0) = A\left(a - \frac{x}{a}\right) \text{ and } u(x, \infty) = 0$$
 5+5