2019

B.Sc.

1st Semester Examination PHYSICS (Honours)

Paper-GE 1-P

Full Marks: 20 Time: 3 Hours

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Elements of Modern Physics Lab

1. Determine the value of Boltzmann constant using

	V-I characteristics of p-n diode [value of n supplied]		
((a)	Working formula.	2
((b)	Circuit diagram.	2
((c)	Implementation of the circuit.	2
((d)	Data for In Vs. V curve.	5
((e)	Drawing In I Vs. V curve.	2
((f)	Calculation of k from graph.	2

2. Determine work function of the material filament

of directly heated vacuum diode. [Temperature

		-efficient of resistance of filament material is supplied]	s to	
	(a)	Working formula.	2	
0	(b)	Circuit diagram.	2	
	(c)	Implementation of the circuit.	2	
	(d)	Data for $\ln \frac{1}{T^2}$ Vs. $\frac{1}{T}$ graph.	5	
	(e)	Drawing $\ln \frac{1}{T^2}$ Vs. $\frac{1}{T}$ graph.	2	
	(f)	Calculation of work function from graph.	2	
3.	3. Determine the wave length of H_{α} emission line Hydrogen atom using grating method. [Number rulings per mm is to be supplied]			
	(a)	Working formula.	2	
	(b)	Vernier constant of the spectrometer.	1	
	(c)	Setting the grating for normal incidence.	2	
	Reading for deviation of H_{α} line for any order on either side of the central maximum (Reading for both vernier are to be taken)	m.		
	(e)	Calculation of the wavelength of H_{α} emission line.	on 2	
4.	Dete	ermine the wave lengths of absorption lines	in	

(a) Working formula.

the rotational spectrum of Iodine vapour.

2

(b) Vernier constant of the spectrometer.			
(e) Setting the grating for normal incidence.			
(Reading for deviation of H_α line for any two abserption lines specified by the examine (Readings on Either side of the centre maximum and for one vernier is to be taken) 			
(6	c) Calculation of the wavelength of H_{α} emission line.			
5. Study the diffraction patterns of a single slit usir laser and measure its intensity variation using LDI				
(a) Theory			
(b	Data of LDR current versus angle of diffraction (only main scale reading with one vernier) of each sides of the central maximum.			
(c)	Drawing intensity (in arbitrary unit) versu angle of diffraction graph.			
(d)	Calculation of slit width from position of 1s order minima.			
	termine of Planck's constant by photo elictric			
(a)	Working formula.			
(b)	Figure with circuit diagram.			
(c)	Data for stopping potential of photo diode for lights of five wavelengths.			

7.

(d)	Drawing stopping pot graph.	tential versus wavelength	200				
(e)	Calculation of Planck	's constant form graph.	2				
Determine the value of $\frac{e}{m}$ by magnetic focusing							
(The	omson's method)						
(a)	Working formula.						
(b)	Calculation of magnetic field of the Helmholtz coil from magnetizing current. [Radius and number of turns of the Helmholtz coil are to be supplied]						
(c)	Data for D ² versus V accelerating voltages	graph (for at least fou	r 7				
(d)	Drawing D ² versus V	V graph.	2				
(e)	Calculation of $\frac{e}{m}$.	1	2				
Experiment		15 marks					
Laboratary Note book		02 marks	•				
Viva voce		03 marks					