UG/3rd Sem/PHSH(H)/Pr/19

2019

UG 3rd Semester (Honours) Examination

PHYSICS

Paper - C6P

[Practical]

Full Marks: 20 Time: 3 Hours

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Distribution of Marks: Experiment - 15

LNB: 02

Viva: 03

Perform one experiment alloted through drawing cards.

- 1. Determine Mechanical Equivalent of heat by Callender and Barne's constant flow method.
 - (a) Wroking formula.

2

(b) Circuit diagram.

(c)	Initial steady temperature difference of thermometers.	the
(d)	Recording of steady temperatures at the inlet outlet respectively, potential difference across coil, current through it and rate of flow of liq	the
	[for three different sets of currents and voltage	ges]
(e)	Calculation of mechanical equivalent of heat.	1½
(f)	Accuracy.	11/2
	ermine thermal conductivity of copper by Sear paratus.	de's
(a)	Working formula.	2
(b)	Experimental diagram.	1
(c)	Initial steady temperatures recorded thermometers placed at the inlet and outlet coiled tube; and two other points on the bar	of
(d)	Recording of temperatures of four thermome at steady state during steam flow.	ters 4

(e) Collection of water in given time 't'.

(f) Diameter of the bar by slide calliprs. supplied)	(V. C
(g) Distance between the thermometers on t	he bar. 1
(h) Calculation	1
(i) Accuracy	1
. Determine thermal conductivity (k) of cop Angstrom's method.	per by
Apply a periodic square heat pulse to one er copper rod while other end reamins in temperature. Record temperatures by two there or other devices at a small distance Δx apar function of time. Apply Fourier transformation f distinct measurements of the thermal conductive the copper rod for 1st and 3rd hermonics of wave.	room mistors t, as a or two vity of
(a) Theory	2
(b) Arrangement for square heat pulse.	1
(c) Time-temperature data collection with p	горег

5

acquisation unit.

3.

	(d) Fourier analysis of data	3
	(e) K for 1st and 3rd harmonics of heat wave.	2
4.	Determine thermal conductivity of a bad conductivity by Lee and charlton's disc method.	tor
	[Mass and thickness of the lower disc, Diameter and thickness of the bad conducting disc and steady state temperature are to be supplied.]	
	(a) Wrokijng formula with Bedford's correction	2
	(b) Time-temperature record during cooling (a direct heating by steam)	fter 4
	(c) Time-temperature graph to find rate of cooling	ng 3
	(d) Bedford's correction	1
	(e) Calculation	2
	(f) Accuracy	1
	(g) Mention the process of measuring thickness the experimental disc and the process	

recording steady state temperature.

1+1

Determine the Temperature coefficient of Resistance
 (α) by Platinum Resistance Thermometer (PRT)

[Measure resistance of PRT at two different known temperatures preferably at ice and steam]

- (a) Wroking formula and circuit diagram 1+1
- (b) Data for electrical mid point.
- (c) Data for determination of the resistance of the PRT ice and steam 4+4
- (d) Evaluation of resistance per unit length (p) of the bridge-wire.
- (e) Calculation of resistance at two different temperatures. 1+1
- (f) Evaluation of temperature cofficient (α) of resistance.
- 6. Study the variation of Thermo-Emf of a Thermocouple with difference of temperature of its two Junctions.

[Resistance of the potentiometer wire is to be supplied]

1

- (a) Working formula and circuit diagram 1+1
- (b) Calculation of R to be put in series with potentiometer wire for $5\mu^{\nu}$ drop 1
- (c) Datas for e-t graph (at least six points) + calculation of e 6+2
- (d) e t graph 2
- (e) Determination of thermoelection power 1
- (f) Accuracy 1
- 7. Calibration of a thermocouple within the temperature range of 80° C to 40°C with cold junction at ice bath. Hence finding melting point of Wax using calibration curve (null point length (l) vs. temperature (t) graph). (Rp is to be supplied]
 - (a) Working formula t circuit diagram 1+1
 - (b) Calculation of R to be put in series with potentiometer wire fo r 5^{μ^ν}/_{cm} drap, considering given Rp.
 - (c) Data for null-point length (l) vs. temperature graph 3

(d) Drawing of null point length (l) vs. temp(t) graph.	erature 2		
(e) Data for null point length vs. time graph metting or freezing of wax.	during 3		
(f) Null point length vs. time graph.	2		
(g) Determination of melting point using cali curve.	bration 1		
(h) Accuracy	1		
 Calibration of a thermocouple within the temperatur range of 80°C to 40°C with cold junction at ice bath by direct measurement using OPAMP. 			
(a) Theory and circuit diagram	1+1		
(b) OFF-SET null adjustment	2		
(c) Hot junction temperature vs output voltage for at least six difference temperatures.	ge data 6		
(d) Calibration curve (hot junction temperate output voltage)	re vs.		
(e) Calculationj of thermo-electric power fro calibration graph	om the 2		
(f) Accuracy	1		