2019

B.Sc.

1st Semester Examination PHYSICS (Honours)

Paper--C 2-P

Full Marks: 20 Time: 3 Hours

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

- 1. Determine the Moment of Inertia of Flywheel.
 - (a) Working Formala.

slide

3

- (b) Data for the radius of the shaft by slide calliperse (Find v.c. for slide calliperse) 1+2
- (c) Data for h by meter scale.

I

2

- (d) Data for time of fall two different loads. 3
- (e) Data for number of rotation of the flywheel. 3
- (f) Calculate the moment of Inertia.

[Turn Over]

2.	Determine	the Mo	dulus of	Rig	idily	of a	wire	by
	Maxwell's	needle	(Length	of	the	wire	will	be
	supplied)		18					

(a) Working Principal

3

- (b) Data for the radious of wire by screw gauge. (Determine least count for screw gauge) 1+2,
- (c) Determine the mass of the hollow and solid cylinder.
- (d) Data for time period for solid cylinders outside the needle and inside the needle (T₁ and T₂)
 [Measure time for at least 10 oscillation for three observation]
- (e) Calculate of rigidity modulus.
- 3. Determine the Young's Modulus of a wire by optical lever method. (length of the arm of a optical lever are to be supplied)
 - (a) Working principle.

3

(b) Data for the radius of the wire by screw gauge. 1+2

		(c) Data for load depression graph (5 loads) optical lever method.	by 5
		(d) Draw load depression graph.	2
		(e) Calculation Young's Modulus (Y) from gra	ph. 2
	4.	Measure the internal diameter of a capillary Tu	be.
8		(a) Screw-gauge and Travelling microscope.	3
ž.		(b) Data for least count of screw gauge.	2
18		(c) Data for diameter by screw gauge.	3
		(d) Data for vernier constant of travelli microscope.	ng 7
	5.	To determine g by Bar Pendulum.	
		(a) Working principal.	3
		(b) Data T vs d graph [measure time at least oscillations]	15 7

6.

7.

(a)

	()		
(c)	Draw graph for T vs d.		
(d)	Calculation of g from graph.		
	ermine the elastic constants of a wire by Searle's hod. [length and depth of bars will be supplied]		
(a)	Working Formula for γ , η and σ .		
(b)	Data for the radius of the wire by screw-gauge. 1+2		
(c)	Data for Time periods of vertical and horizontal oscillations. (At least 20 oscillations for each))	
(d)	Calculation of γ , η and σ .	\$	
Determine the value of g using Keter's Pendulum.			

(b) Preliminary records of times of oscillations during adjustment of positions of cylinders. 5

3

Working formula.

1	(0)	Data for final time periods T_1 and T_2 .	
	(d)	Data for distances l_1 and l_2 .	
	(e)	Calculation of g.	,
8		determine g and velocity for a freely falling using 'digital timing technique'.	nį
	(a)	Theory and working formula.	1
ž.	(b)	Recording of height and time (T) of free falling for five different heights for first body.	ng 3
	(c)	Recording of same for second body of differe mass.	ni 3
	(d)	Graphs of height (h) vs. T ² .	2
¥	(e)	Determined g from graph.	2
ì	(f)	Calculation of velocity of falling whe touches the surface for both mass [Take an height(h)]	
		8	

- 9. Determine the height of a vertical distance between two points using sextant.
 (a) Working formula.
 (b) Vernier constant.
 - (c) Reading of base point and vertical point for three horizontal distance (d) [by measuring tape or metre scale] 6
 - (d) Table for $\tan \theta$ vs $\frac{1}{d}$ graph and plot of the graph.
- 10. Determine co-efficient to viscosity of water by

(e) Calculation of height (h) the graph.

Working Formula.

(a)

- capillary flow method (Poiseuille's Method)
- (b) Data record for h. 6

3

(c) Calculation with necessary plots. 6

Distribution of Marks

Total	20 marks		
Viva voce	03 marks		
Laboratary Note book	02 marks		
Experiment	15 marks		