2019

B.Sc. (Hons)

4th Semester Examination

PHYSICS

Paper - GE4T

Full Marks: 40

Time: 2 Hours

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Electricity and Magnetism

1. Answer any five questions:

- 5×2=10
- (a) Calculate the curl of the vector function $\vec{v} = -y\hat{x} + x\hat{y}$. Give its physical significance of this vector function.
- (b) A charge of q sits at the centre of a cube. What is flux of \vec{E} through each face of the cube.
- (c) State Gauss's theorem in presence of dielectric. Explain each term.

(d) A current distribution gives rise to the magnetic vector potential

$$\vec{A}(x,y,z) = x^2y\hat{i} + y^2x\hat{i} - xyz\hat{k}$$

Find the corresponding magnetic field \vec{B} at (-1, 2, 5).

- (e) What is the energy stored in a capacitor of capacitance 2pF raised to a potential of 1 kV?
- (f) What is Biot-Savert law?
- (g) Define magnetic susceptibility and magnetic permeability
- (h) What is displacement current?
- 2. Answer any four questions: $4 \times 5 = 20$
 - (a) (i) Starting from Maxwell's equation derive the wave equation for electric and magnetic fields in free space.
 - (ii) Show that for electromagnetic waves in free space, energy is equally shared between electric and magnetic fields.
 - (b) (i) Find an expression for the coefficient of self inductance of a long solenoid.

- (ii) Find the mutual inductance between the primary and secondary of a standard solenoid.
- (c) A solenoid 1 m long and radius 4 cm has 1000 turns and is carrying a current of 1A. Find the magnetic field at the centre. Derive the formula used.
 5
- (d) (i) Using divergence theorem prove $(\vec{r} \cdot \vec{ds} = 3v)$.
 - (ii) Find the angle between two vectors. 2

$$\vec{A} = 3\hat{i} + 2\hat{j} - 6\hat{k}$$
$$\vec{B} = 4\hat{i} - 3\hat{j} + \hat{k}$$

- (e) (i) Find the capacitance of a condenser consisting of two concentric metallic spheres, the inner of which is charged and outer is earthed.
 - (ii) What will be the effect of introducting a dielectric slab between the plates of a condenser.
- (f) What is electric dipole? Find the field at any point for the dipole. 1+4

[Turn Over]

3. Answer any one question:

 $1 \times 10 = 10$

(a) (i) Examine, which of the following functions may be a possible electrostatic field

(a)
$$\vec{E} = A(4y\hat{i} - 2x\hat{j} - \hat{k})$$

(b)
$$\vec{E} = A \left[2x \hat{i} - yz^2 \hat{j} - (1 + y^2z) \hat{k} \right]$$

For the field, find charge density. 2+2+1

- (ii) Evaluate $\int \vec{F} \cdot \hat{n} \, ds$, $\vec{F} = 4xz\hat{i} y^2\hat{j} + yz\hat{k}$, where s is the surface of a unit cube. 5
- (b) (i) State and establish Poynting's theorem.

 Interpret each term.
 - (ii) The intensity of Sunlight reaching the earth's surface is about 1300 Wm⁻². Calculate the strength of electric and magnetic fields of the incoming sunlight.

বঙ্গানুবাদ

১) (a) নিঃনিথিত ভেক্টর অপেক্ষকটির র্কাল বের কর এবং এর গুরুত্ব উল্লেখ কর ! v = −vx + xv

- (b) একটি ঘনকের কেন্দ্রে একটি আধান q অবস্থান করছে। ঘনকের প্রত্যেক তলের মধ্য দিয়ে অতিক্রান্ত তড়িৎ ফ্লাব্সের পরিমান নির্ণয় কর।
- (c) পরা বৈদ্যুতিক মাধ্যমে গসের উপপাদ্য বিবৃত কর এবং প্রত্যেক পদ ব্যাখ্যা কর।
- (d) নিম্নলিখিত চৌম্বক ভেক্টর বিভবের ক্ষেত্রে চৌম্বক ক্ষেত্রের মান $\left(\overrightarrow{B}\right)$ (-1, 2, 5) বিন্দুতে নির্ণয় কর।

$$\vec{A}(x,y,z) = x^2y\hat{i} + y^2x\hat{i} - xyz\hat{k}$$

- (e) 2pF ধারকত্ত্ব যুক্ত কোন ধারকের বিভব 1 kV বাড়ানো হল। উহাতে সঞ্চিত শক্তির পরিমাণ নির্ণয় কর।
- (f) Biot-Savart Law টি লেখ
- (g) টৌম্বক প্রবনতা ও ভেদ্যতার সংজ্ঞা দাও
- (h) Displacement প্ৰবাহ কি?
- - শ্ন্য মাধ্যমে তড়িংচুম্বকীয় তরঙ্গের ক্ষেত্রে দেখাও
 যে শক্তি সমভাবে বল্টিত হয় তড়িংক্ষেত্রে এবং
 চুম্বকক্ষেত্রে।

- (b) (i) একটি লম্বা সলিনয়ডের স্বাবেশাঙ্কের রাশিমালা নির্ণয় কর।
 - (ii) একটি প্রমান সলিনয়ডের প্রাইমারী এবং সেকেগুারীর ভিতর পারস্পরিক আবেশাঙ্কের রাশিমালা নির্ণয় কর।
- (c) ১ মিটার দীর্ঘ এবং ৪ সেমি ব্যাসার্য্যের একটি সলিনয়ডের পাকসংখ্যা ১০০০। সলিনয়ডের ভিতর দিয়ে ১A তড়িৎ প্রবাহিত হলে কেন্দ্রে চুম্বকক্ষেত্রের মান নির্ণয় কর। প্রয়োজনীয় র্ফমূলা প্রতিষ্ঠা কর।
- (d) (i) divergence সূত্র ব্যবহার করে

প্রমাণ কর $\vec{r} \cdot \vec{ds} = 3v$

(ii) দুটি Veotor এর মধ্যেকার কোন বাহির কর।

$$\vec{A} = 3\hat{i} + 2\hat{j} - 6\hat{k}$$
$$\vec{B} = 4\hat{i} - 3\hat{j} + \hat{k}$$

(e) (i)
$$\vec{A} = 3\hat{i} + 2\hat{j} - 6\hat{k}, \vec{B} = 4\hat{i} - 3\hat{j} + \hat{k}$$

দুটি সমকেন্দ্রিক ধাতব গোলক দিয়ে একটি ধারক তৈরী করা হয়েছে। ভিতরটিতে আধান দেওয়া হয়েছে এবং বাহিরটা কে ভূ সংলগ্ন করা হয়েছে। ধারকের ধারকত্ব বাহির কর।

- (ii) কোন পরাবিদ্যুৎ মাধ্যম ধারকের মধ্যে প্রবেশ করালে ধারকের মানের কি পরিবর্তন হবে?
- (f) তড়িৎ দ্বি-মেরু কি? যে কোন বিন্দুতে উহার জন্য ক্ষেত্র বাহির কর।
- ৩) (a) (i) নিম্নলিখিত কোন অপেক্ষকটি স্থির তড়িৎক্ষেত্রকে সূচিত করে। তড়িৎ ক্ষেত্রটির আয়তণ ঘনত্ব বের কর।

(a)
$$\vec{E} = A(4yi - 2x\hat{j} - \hat{k})$$

(b)
$$\vec{E} = A \left[2x \hat{i} - yz^2 \hat{j} - \left(1 + y^2z\right) \hat{k} \right]$$

(ii) একটি একক ঘনকের জন্য

$$\vec{F} \cdot \hat{n} \, ds$$
, $\vec{F} = 4xz\hat{i} - y^2\hat{j} + yz\hat{k}$ বের কর।

- ৩) (b) (i) Poynting's theorem বিবৃত করে প্রতিষ্ঠা কর।
 - (ii) পৃথিবীপৃষ্ঠে সূর্যালোকের তীব্রতা 1300 Wm⁻²
 স্র্যালোকের তড়িৎ ক্ষেত্র এবং চুম্বকক্ষেত্রের মান
 বাহির কর।

Digital Analog Circuit and Instrumentation

1. Answer any five questions:

(a) Convert (0.101)₂ into its decimal equivalent.

 $5 \times 2 = 10$

- (b) Show that $AB + \overline{A}C + BC = AB + \overline{A}C$
 - (c) The forbidden energy gap in a direct gap semiconductor is 1.43 eV. Determine the wavelength of radiation emitted when a conduction band electron makes direct recombination with a valence band hole.
 - (d) Write current-voltage relation of an ideal p-n function diode and draw its characteristic curve.
- (e) Write down the characteristics of an ideal OPAMP.
 - (f) Explain how an OPAMP may be used as an adder.
- (g) Draw NOT-gate using transistor.
- (h) Substract binary number 1101 from 11010.
- 2. Answer any four questions : $4\times5=20$
 - (a) (i) Explain the operation of an OP-AMP as a non-inverting amplifier.

- (ii) In a circuit of non-inverting amplifier $R_1 = 10 \, k \, \Omega \quad \text{and} \quad R_f = 50 \, k \, \Omega \, . \quad \text{What}$ would be the output voltage for an input $v_s = 1 \, V \qquad \qquad 2$
- (b) (i) A pure semiconductor has intrinsic carrier density of $10^{20}/_{m^3}$ at 300K. When doped with donor type impurities the hole concentration decreases to $10^{18}/_{m^3}$ at the same temperature. Find the value of electron density.
 - (ii) 'The barrier potential across a p-n junction diode cannot be measured simply by placing a voltmeter across the diode terminals Explain.
 - (c) Calculate ripple factor and retification efficiency for a full wave rectifier. 2½+2½
 - (d) Using positive feedback establish a relation between closed loop gain and open loop gain for a feedback amplifier. Hence define Barkhausen criterion of oscillation. 3+2

(e) $y = A\overline{B} + \overline{A}B$

Write truth table of above equation.

Using AND, OR, NOT gate represent the above equation. 2+3

- (f) Establish the relation between α and β for a transistor.
- 3. Answer any *one* question : $1 \times 10 = 10$
 - (a) What are half-adder and full-adder? How can they be implemented by logic gates? Draw the logic block diagram for adding two decimal numbers 7 and 12.
 - (b) (i) Draw a circuit using OP-AMP whose output $v_0 = -(4v_1 + 6v_2)$, where v_1 and v_2 are two input signal.
 - (ii) If the transistor is used as a CE amplifier with load resistance $10 \, \mathrm{k} \, \Omega$ and effective source resistance $600 \, \Omega$, find the current gain.

Given, $h_{fe} = 50$, $h_{oe} = 25 \times 10^{-6} \text{ A/V}$. 2

(11)

- (iii) Explain the use of a Zener as a voltage regulator.
- (iv) A sine wave is displayed on a CRO screen with the calibrated time base set at 0.1 ms/div. One cycle of displayed waveform spreads over 10 divisions along the horizontal axis. Find the frequency of the waveform.