Total Page - 7

UG/2nd Sem/Phys/H/19 (Pr.)

2019

B.Sc.

2nd Semester Examination

PHYSICS (Honours)

Paper - C3P

[Practical]

Full Marks: 20

Time: 3 Hours

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Answer one question.

- 1. Determine the capacitance of a given capacitor using an ac source of low frequency (~ 50 Hz)
 - (a) Theory

3

2

- (b) Circuit diagram and its implementation.
- (c) Table for V_R, V_C data for fixed R and a fixed frequency (at least five voltages) 5

[Turn Over]

	(d) Drawing of V _C ~I curve.	3
	(e) Determination of capacitance from graph.	i
	(f) Accuracy.	1
2.	Determine an unknown low resistance a potentiometer.	using
	(a) Theory	3
	(b) Circuit diagram and its implementation.	2
	(c) Table for null points for at least three diff wires.	ferent 2×3
	(d) Calculation of r	2
	(e) Accuracy	1
	(f) Discussion	1
3.	Determine unknown low resistance using Foster's Bridge.	Carey
	(a) Theory	3
	(b) Circuit diagram and its implementation.	2

	(0)	for at least four sets.	4
	(d)	Table for determining unknown resistance (R) at least four sets.	for 4
	(e)	Calculation.	1
	(f)	Accuracy	11
4.	Ver	ify the Thevenin and Norton theorems	
	(a)	Statement of the theorems.	2
	(b)	Circuit diagram and its implementation	2
	(c)	$\boldsymbol{V}_L\!\sim\!\boldsymbol{I}_L$ (load voltage and load current) data fat least six loads.	or 6
	(d)	Draw two separate graphs for two theorems	
	(e)	Verification summary table.	1
5.	Ver	ify the Superposition theorem	
is .	(a)	Theory	3
	£5	[Turn Over	•]

(b) Circuit diagram and its implementation	2
(c) Data for voltage (v) and current (I) when of source is switched on alternatively and be sources are switched on (Two times each) 2	oth
(d) Calculation	2
(e) Verification table and accuracy	2
6. Verify Maximum power transfer theorem	
(a) Theory	3
(b) Circuit diagram and its implementation	2
(c) Data for $V_L \sim I_L$ or $V_L \sim R_L$ at least for different loads.	10 5
(d) Draw of $P_L \sim R_L$ graph	3
(e) Conclusion and accuracy	2
7. Determine the resistance of a given galvanomer following Thomson's method.	ter
(a) Theory	3
(b) Circuit diagram and its implementation	2

	(c)	variation and null point detection.	ce 8
	(d)	Calculation and accuracy	2
8.		dy the variation of magnetic field strength (Ing the axis of a solenoid.	3)
	(a)	Theory	3
	(b)	Circuit diagram and its implementation	2
	(c)	Measure B along the axis of the given solenof for a fixed current (at least 10 positions)	id 5
	(d)	Plot variation of B along the axis.	3
70	(e)	Determine $\frac{dB}{dx}$ at two end points and the min point	id 2
		ponit	_
9.		ermine self-inductance of a coil by Anderson ge (DC balance to be made by the examiner)	's
	(a)	Theory	3
	(b)	Circuit diagram and its implementation	2
		[Turn Over	J

	(c)	Data for variation of 'r' with at least five different capacitors.	ent 5
	(d)	Drawing graph $\frac{1}{c} \sim r$	2
	(e)	Calculation of 'L' from graph.	3
10.	Stu	dy the response curve of a series LCR circuit.	
	(a)	Theory	3
	(b)	Circuit diagram and its implementation	2
	(c)	Data for current Vs. frequency graph (at lea 10 frequencies)	ist 5
	(d)	Draw graph (1 \sim f) to show resonance point a band width	nd 2
11.	(e)	Determination of impedance at resonance, qual factor and Band width.	ity 3
		dy the response curve of a parallel LCR circu determine its antiresonance frequency	uit
	(a)	Theory	3
	(b)	Circuit diagram and its implementation	2

(c)	Data for frequency Vs. impedance graph (at lea 10 frequencies)	as S
(d)	Drawing of frequency Vs. impedance graph	1
(e)	Determine antiresonance frequency and qualifactor	ity 2
	[LNB: 02, Viva-voce: 03]	