UG/5th Sem/Math(H)/T/19

2019

B.Sc. (Honours)

5th Semester Examination

MATHEMATICS

Paper - DSE-1T

Full Marks: 60

Time: 3 Hours

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

(LINEAR PROGRAMMING)

Unit - I

(Simplex Algorithm)

1. Answer any five from the following:

2×5

(a) Find a basic feasible solution of the system of equations:

$$x_1 + 2x_2 + 3x_3 = 6$$

$$2x_1 + x_2 + 4x_3 = 4$$

Is the solution degenerate?

- (b) Prove that a hyperplane is a convex set.
- (c) Prove that the set of all convex combination of a finite number of points is a convex set.
- (d) What is simplex? Give an example of a simplex in 3-dimension.
- (e) What is the basic principle of two phase method?
- (f) Define convex polyhedron.
- (g) Put the following LPP in a standard form

Minimize
$$Z = 3x_1 - 4x_2 - x_3$$

Subject to, $x_1 + 3x_2 - 4x_3 \le 12$
 $2x_1 - x_2 + x_3 \le 20$
 $x_1 - 4x_2 - 5x_3 \ge 5$

- $x_1 \ge c_1 x_2$ and x_3 are unrestricted in sign.
- (h) (i) State Fundamental theorem of L.P.P.
 - (ii) State the sufficient condition for a basic feasible solution X_B to an L.P.P.

Maximize $Z = C^T X$

Subject to, AX = b, $X \ge 0$

to be optimal.

2. Answer any one from the following:

5×1

(a) Find the solution of the following L.P.P. graphically

Maximize $Z = 5x_1 + 3x_2$

Subject to
$$3x_1 + 5x_2 \le 15$$
; $5x_1 + 2x_2 \le 10$.

(b) A firm manufactures three products A, B and C. The profits are Rs. 3, Rs. 2 and Rs. 4. respectively for each unit of products.

The firm has two machines and below is the required processing time in minutes for each machine on each product.

Machines X and Y have 2000 and 2500 machine-minutes respectively.

$$\begin{array}{c|cccc} & & & & & & \\ & Product & & & \\ \hline & A & B & C \\ \hline Machines & X & 4 & 3 & 5 \\ \hline & Y & 2 & 2 & 4 \\ \hline \end{array}$$

The firm manufactures 100 A's, 200 B's and 50 C's but not more than 150 A's.

Set up a L.P.P. to maximize the profit.

3. Answer any one from the following:

 10×1

(a) Solve using two phase method:

$$Minimize \quad Z = 3x_1 + 5x_2$$

Subject to
$$x_1 + 2x_2 \ge 8$$

 $3x_1 + 2x_2 \ge 12$
 $5x_1 + 6x_2 \le 60$, $x_1, x_2 \ge 0$.

(b) Solve by simplex method (penalty method).

Maximize
$$Z = 5x_1 - 2x_2 + 3x_3$$

Subject to
$$2x_1 + 2x_2 - x_3 \ge 2$$

 $3x_1 - 4x_2 \le 3$
 $x_2 + 3x_3 \le 5$
 $x_1, x_2, x_3 \ge 0$

Unit - II

(Duality and Special LPP)

4. Answer any three from the following:

 2×3

- (a) State the weak duality theorem of a L.P.P.
- (b) Give the comparison between transportation and assignment problem.
- (c) Find the dual of the following LPP:

Maximize
$$Z = 6x_1 + 5x_2 + 10x_3$$

Subject to
$$4x_1 + 5x_2 + 7x_3 \le 5$$

 $3x_1 + 7x_3 \le 10$
 $2x_1 + x_2 + 8x_3 = 20$
 $2x_2 + 9x_3 \ge 5$

 $x_1, x_3 \ge 0$ and x_2 is unrestricted in sign.

- (d) Prove that dual of dual is primal.
- (e) Prove that the number of basic variables in a transportation problem is at most (m+n-1).

5. Answer any one from the following:

5×1

- (a) If x be any feasible solution to the primal problem and v be any feasible solution to the dual problem, then $cx \le b'v$.
- (b) Solve the travelling salesman problem where the entries as given as distance. Find minimum distance.

8	Α	В	C	D	E
Α	ij	7	6	8	4
В	7	=	8	5	6
С	6	8	-	9	7
D	8	5	9	-	8
E	4	6	7	8	

6. Answer any one from the following:

10×1

(a) Find the dual of the following problem and solve the dual problem. Also find the solution of the primal problem from the dual.

Maximize
$$Z = 6x_1 + 4x_2 + 6x_3 + x_4$$

Subject to
$$4x_1 + 5x_2 + 4x_3 + 8x_4 = 21$$

 $3x_1 + 7x_2 + 8x_3 + 2x_4 \le 48$
 $x_1, x_2, x_3, x_4 \ge 0$

10

(b) (i) Find the optimal solution of the transportation problem

using VAM method.

6

(ii) Find the optimal assignments for the assignment problem with the following cost matrix

4

(8)

Unit - III

(Game Theory)

7. Answer any two from the following:

 2×2

- (a) State the general dominance rules to reduced the size of pay-off matrix.
- (b) Solve the game with the following payoff matrix

(c) State the following terms in concern with the game theory:

Rectangular game, Saddle point, Symmetric game.

8. Answer any two from the following:

5×2

(a) Solve the Game graphically:

(b) Transform to LPP and solve the game problem whose payoff matrix is given below, by simplex method.

$$\begin{bmatrix} 1 & -1 & -1 \\ -1 & -1 & 3 \\ -1 & 2 & -1 \end{bmatrix}$$

(c) Use dominance property to reduce the payoff matrix and solve the game

0	0	0	0	0	0
4	2	0	2	1	1
4	3	1	3	2	2
4		7	-5	1	2
4	3	4	-1	2	2
4	3	3	-2	2	

(10)

(POINT SET TOPOLOGY)

Unit - I

(Countable and Uncountable sets)

(Mark - 18)

		(Iviaire 10)	
1.	Ans	swer any four from the following:	2×4=8
	(a)	Prove that $\mathbb{N} \times \mathbb{N}$ is countable where \mathbb{N} the set of all positive integers.	denotes
	(b)	State Schröder-Bernstein Theorem.	2
	(c)	State Axiom of choice.	2
	(d)	Is the set of all integers well-ordered ? your answer.	Justify 2
	(e)	Define strict partial order on a non-emp	ty set.
	(f)	State the Zorn's lemma.	2
2.	Ans	swer any two from the following:	5×2=10
	(a)	Prove that there is no surjective map N power set of N where N denotes the all positive integers	

(b) (i) Let A be a set. Define the Cardinal number of A which is often denoted by Card (A).

2

(ii) Let A, B be two disjoint sets. If we define the addition of cardinal nos. of A & B as follows:

$$Card(A) + Card(B) = Card(A \cup B),$$

then check whether the above definition is well-defined or not. 3

(c) If a and b are two real numbers, define a < b if and only if b - a is a positive rational number. Show that '<' is a strict partial order on \mathbb{R} . Then exhibit one maximal simply ordered proper subset of \mathbb{R} (with justification). 2+3=5

Unit - II

(Topological Space)

(Mark - 21)

3. Answer any *three* from the following: $3 \times 2 = 6$

(a) Define lower limit topology on \mathbb{R} .

[Turn Over]

2

- (b) Let X, Y, Z be three topological spaces and $f: X \to Y$, $g: Y \to Z$ be both continuous. Then prove that $g \circ f$ is a continuous map from X to Z.
- (c) Let τ_1 , τ_2 be two topologies on a non-empty set X. Suppose $\tau_1 \subset \tau_2$. Let A be a non-empty subset of X. Then show that every T_2 -limit point of A is a τ_1 -limit point of A, too.
- (d) Let (X, τ_1) and (Y, τ_2) be two topological spaces. Define product topology of X and Y.
- (e) Let (X, d) be a metric space. The exhibit a basis \mathcal{B} for the metric topology induced by d on X.
- (f) State Baire Category Theorem. 2
- 4. Answer any *one* from the following: $5 \times 1 = 5$
 - (a) Let (X, τ) and (Y, \mathcal{H}) be two topological spaces and $f: X \to Y$ be a mapping. Then prove that the following are equivalent.
 - (i) f is continuous.

- (ii) $f^{-1}(S) \in \tau$ for all $S \in \mathscr{S}$ where \mathscr{S} is a subbase for \mathscr{U} .
- (b) Let (X, τ) and (Y, \mathcal{H}) be two topological spaces. Let \mathcal{B} and \mathcal{B}' be bases corresponding to τ and \mathcal{H} , respectively. Then prove that

$$\mathcal{Q} = \{B \times C \mid B \in \mathcal{B}, \ C \in \mathcal{B}'\}$$

forms a basis for the product topology on $X \times Y$.

5. Answer one from the following:

 $10 \times 1 = 10$

- (a) (i) Let $X = \{a, b, c, d, e\}$. Verify whether each of the following collections of subsets of X forms a topology on X (Give reasons).
- (1) $\tau_1 = \{X, \phi, \{a\}, \{c, d\}, \{a, c, d\}, \{b, c, d, e\}\}$
- (2) $\tau_2 = \{X, \phi, \{a\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}\}$
- (3) $\tau_3 = \{X, \phi, \{a\}, \{c, d\}, \{a, c, d\}, \{a, b, d, e\}\}\$. 2+2+2=6

(ii) Define finite complement topology on a nonempty set X and prove that if X is finite then the finite complement topology on X is same as the discrete topology on X.

2+2=4

(b) (i) Let $X = A \cup B$ where A, B are closed in (X, τ) . Let $f: A \to Y$ and $g: B \to Y$ be two continuous functions. If f(x) = g(x) for all $x \in A \cap B$, then prove that f and g combine to give a continuous function $h: X \to Y$ defined by

$$h(x) = f(x)$$
, when $x \in A$
= $g(x)$, when $x \in B$.

(ii) Let (X, d) be a metric space. Let us consider another metric \overline{d} on X defined by

$$\overline{d}(x, y) = \min\{1, d(x, y)\}\$$
 for all $x, y \in X$.

Then prove that the metric topology on X induced by d is same as the metric topology on X induced by \overline{d} .

Unit - III

(Connectednes and Compactness)

(Mark - 21)

6. Answer any three from the following:

(a) Define a connected topological space. 2
(b) Define path component of a topological space.
(c) Consider (\mathbb{R}, τ_u) where τ_u denotes the usual
topology on \mathbb{R} . Is (\mathbb{R}, τ_u) compact? Justify your answer.
(d) Give example (with justification) of a locally compact space which is not compact. 2
(e) Consider \mathbb{R}^n with the Euclidean metric d . In the
metric topology on \mathbb{R}^n induced by d , find the
compact subspaces of \mathbb{R}^n .
(f) "Union of connected subspaces of any topological space is connected" — true or false?

Justify your answer.

2

 $2 \times 3 = 6$

- 7. Answer any *one* from the following: $5 \times 1 = 5$
 - (a) Let (X, τ) be a topological space and $\{A_{\alpha}\}_{\alpha \in J}$ be a family of connected subspaces of X. Prove that if $\bigcap_{\alpha \in J} A_{\alpha} \neq \emptyset$ then $\bigcup_{\alpha \in J} A_{\alpha}$ is connected.
 - (b) Prove that every closed subspace of a compact space is compact. 5
- 8. Answer any *one* from the following: $10 \times 1 = 10$
 - (a) (i) Prove that product of two connected spaces is connected.
 - (ii) Show that continuous image of a compact space is compact. 5
 - (b) (i) Define totally bounded metric space.
 - (ii) Prove that if (X, d) is a totally bounded metric space then d is a bounded metric on X.

(iii) Prove that $(\mathbb{R}, \overline{d})$ is bounded but not totally bounded where \overline{d} is a metric defined on \mathbb{R} by

$$\overline{d}(x, y) = \min\{1, |x-y|\}.$$

(iv) Give example of a metric subspace Y of (\mathbb{R}, d) (where d(a, b) = |a - b| for all $a, b \in \mathbb{R}$) such that Y is totally bounded but not complete. 2+3+3+2=10

(THEORY OF EQUATIONS) Unit - I

(Properties of Polynomial Equation)

(Marks: 15)

1. Answer any five questions:

 $2 \times 5 = 10$

(a) If α be the imaginary root of the equation $x^n - 1 = 0$, where *n* is prime, prove that

$$(1-\alpha)(1-\alpha^2)...(1-\alpha^{n-1})=n$$
.

- (b) Express $f(x) = x^4 2x^3 5x^2 + 10x 3$ in the form $(x^2 x + \lambda)^2 (ax + b)^2$.
- (c) If $x^2 + px + 1$ be a factor of $ax^3 + bx + c$ prove that $a^2 - c^2 = ab$.
- (d) Apply Descartes rule of signs to find the nature of the roots of the equation $x^8 + 1 = 0$.
- (e) If α , β , γ are the roots of the equation $x^3 3px^2 + 3qx 1 = 0$, then find the centroid of the triangle having vertices

$$\left(\alpha, \frac{1}{\alpha}\right), \left(\beta, \frac{1}{\beta}\right), \left(\gamma, \frac{1}{\gamma}\right).$$

- (f) If f(x) be a polynomial of degree n then prove that f(x) = 0 cannot have more than n roots.
- (g) If 1, a, b, ..., k are n roots of $x^n 1 = 0$ then prove that (1-a)(1-b)...(1-k) = n.

- (h) How many times the graph of the polynomial $(x^4-4)(x^2+x+2)$ will cross x-axis?
- 2. Answer any one question:

 $5 \times 1 = 5$

- (a) If the equation $x^4 + px^3 + qx^2 + rx + s = 0$ has roots of the form $\alpha \pm i\alpha$, $\beta \pm i\beta$, where α , β are real, prove that $p^2 2q = 0$ and $r^2 2qs = 0$. Hence solve the equation $x^4 + 6x^3 + 18x^2 + 24x + 16 = 0$.
- (b) If the equation f(x) = 0 has all its roots real, then show that the equation $ff'' (f')^2 = 0$ has all its roots imaginary.

Unit - II

(Symmetric Function I)

(Marks: 16)

3. Answer any three questions:

 $2 \times 3 = 6$

(a) If α be a special root of the equation $x^8 - 1 = 0$, then prove that

$$(\alpha+2)(\alpha^2+2)...(\alpha^7+2)=\frac{2^8-1}{3}$$
.

- (b) If α , β , γ be the roots of the equation $x^3 + qx + r = 0$, then find the value of $\sum \frac{1}{\alpha^2 \beta \gamma}$.
- (c) If the roots of the equation $x^3 + ax^2 + bx + c = 0$ are in GP. then prove that $b^3 = a^3c$.
- (d) If α , β , γ be the roots of the equation $x^3 + ax + b = 0$, find $\sum \alpha^5$.
- (e) Show that all imaginary roots of $x^7 = 1$ are special roots.
- 4. Answer any *one* question:

 $10 \times 1 = 10$

- (a) (i) Solve $x^3 12x + 8 = 0$ by Cardan's method.
 - (ii) Find the special roots of the equation $x^9 1 = 0$. Deduce that

$$2\cos\frac{2\pi}{9}$$
, $2\cos\frac{4\pi}{9}$, $2\cos\frac{8\pi}{9}$ are the roots
of the equation $x^3 - 3x + 1 = 0$. $4+(2+4)$

- (b) (i) Reduce the reciprocal equation $3x^6 + x^5 27x^4 + 27x^2 x 3 = 0$ to a reciprocal equation in the standard form and solve it.
 - (ii) If α , β , γ be the roots of the equation $x^{3} + px^{2} + qx + r = 0 (r \neq 0),$ find the equation whose roots are $\frac{1}{\alpha} + \frac{1}{\beta} \frac{1}{\gamma}, \ \frac{1}{\beta} + \frac{1}{\gamma} \frac{1}{\alpha}, \ \frac{1}{\alpha} + \frac{1}{\gamma} \frac{1}{\beta}$ 5

Unit - III

(Symmetric Function II)

(Marks: 14)

5. Answer any two questions:

 $2 \times 2 = 4$

(a) Prove that the roots of the equation

$$(2x+3)(2x+4)(x-1)(4x-7)+$$
$$(x+1)(2x-1)(2x-3)=0$$

are all real and different. Separate the intervals in which the roots lie.

(b) Obtain the equation whose roots are the square of the roots of the equation

$$x^4 - x^3 + 2x^2 - x + 1 = 0$$
.

- (c) The sum of two roots of the equation $x^3 + a_1x^2 + a_2x + a_3 = 0$ is zero, show that $a_1a_2 a_3 = 0$.
- 6. Answer any two questions:

 $5 \times 2 = 10$

- (a) Let
- $f\left(x\right) \equiv x^n + p_1 x^{n-1} + \ldots + p_{n-2} x^2 + p_{n-1} x + p_n = 0$ be an equation of degree n having roots $\alpha_1, \ \alpha_2, \ \ldots, \ \alpha_n$. Let $s_r = \alpha_1^r + \alpha_2^r + \ldots + a_n^r$, where $r \geq 0$ is an integer. Then prove that $s_r + p_1 s_{r-1} + \ldots + p_{r-2} s_2 + p_{r-1} s_1 + r p_r = 0,$ if $1 \leq r < n$.
 - (b) If $\alpha, \beta, \gamma, \delta$ be the roots of the equation $ax^4 + 4bx^3 + 6cx^2 + 4dx + e = 0, \quad a \neq 0 \text{ then prove that}$

$$f'(\alpha) + f'(\beta) + f'(\gamma) + f'(\delta) = \frac{32}{a^2} \left[3abc - a^2d - 2b^3 \right].$$

(c) If $\alpha, \beta, \gamma, \delta$ are the roots of the equation $x^4 + px^3 + qx^2 + rx + s = 0$, such that $\alpha\beta + \gamma\delta = 0$, then prove that

$$p^2s + r^2 - 4qs = 0$$

Unit - IV

(Strum's Theorem)

(Marks: 15)

7. Answer any one question:

5×1=5

(a) Reduce the cubic equation

 $ax^3 + 3bx^2 + 3cx + d = 0$ (a, b, c, d are real) to the standard form $Z^3 + 3HZ + G = 0$ where G and H are function of a, b, c, d. Hence obtain necessary and sufficient condition in terms of G and H for the cubic to have two equal roots.

(b) Find the number of the real roots of the equation $x^4 + 4x^3 - x^2 - 2x + 5 = 0$ by using Sturm's method.

8. Answer any one question:

 $10 \times 1 = 10$

(a) Define Sturm's functions. Find the Sturm's functions of the polynomial

 $f(x) = x^5 - 5ax + 4b$. If a and b are positive,

prove that the equation $x^5 - 5ax + 4b = 0$ has three real roots or only one real root according as $a^5 > or < b^4$.

as $a^3 > or < b^4$. 2+3+3

(b) (i) Find the transformation $x = \lambda y + \mu$ which will change the equation

 $x^4 + 4x^3 - 18x^2 - 44x - 7 = 0$

into reciprocal form. Hence solve the equation.

(ii) If α be a multiple root of order 3 of the equation $x^4 + bx^2 + cx + d = 0$, show that

$$\alpha = -\frac{8d}{3c}.$$
 7+3