2019

B.Sc. (Honours)

4th Semester Examination

MATHEMATICS

Paper - C10T

Full Marks: 60

Time: 3 Hours

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable. Illustrate the answers wherever necessary.

Unit - 1 (Group A)

1. Answer any three questions:

 2×3

- (a) Prove that in a ring R if a is an idempotent element then 1 a is also idempotent.
- (b) Define maximal ideal in a Ring. Give it's example.

_

(c) Define char R when char R is called the trivial ring.

×

(d)	If a,	b be two elements of a field F and $b \neq 0$
X 828	then	prove that $a = 1$ if $(ab)^2 = ab^2 + bab - b^2$.
		2

(e) If R is an integral domain, then R[x] is also an integral domain. Where R[x] is a power series ring.

2. Answer any two questions:

5×2

- (a) Define divisors of zero in a ring. Show that the ring of matrices of the form $\begin{pmatrix} a & b \\ 2b & a \end{pmatrix}$ contains no divisor of zero if $a, b \in Q$ but contains divisor of zero if $a, b \in R$.
- (b) Show that every field is an integral domain but the converse of the theorem is not necessarly true.

 5
- (c) Every ideal of the ring of integers (Z, +, .) is a principal ideal.

Unit - 2 (Group B)

3. Answer any two questions:

 2×2

(a) Prove that the rings (Zn, +, .) and (Z/(n), +, .) are isomorphic.

- (b) Let $\{R, +, .\}$ and $\{R', +, .\}$ be two rings and $f: R \to R'$ be a homomorphism. Then prove that $f(-a) = -f(a), \forall a \in R$.
- (c) Let R = (Z, +, .); R' = (2Z, +, .) and $\phi: R \to R'$ be defined by $\phi(x) = 2x$, $x \in Z$, show that ϕ is not a homomorphism.
- 4. Answer any two questions:

5×2

- (a) State and prove 1st isomorphism theorem of Ring.
- (b) Let I and J be two ideals of a ring R. Then I + J and $I \cap J$ are also ideals and the factor ring (I + J) and $V(I \cap J)$ are isomorphic. 5
- (c) Let $\{R, +, .\}$ and $\{R', +, .\}$ be two rings and $f: R \to R'$ be an isomorphism, then prove that
 - (i) if R be commutative then R' is also Commutative
 - (ii) if R contains unity then R' also containing unity.
 - (iii) if R be without divisor of zero then R' is also without divisor of zero.

[Turn Over]

K

Unit - 3 (Group C)

5. Answer any two questions:

2×2

- (a) Find the coordinate vector of the vector (3, -3, 3) with respect to the basis $B = \{(1, 1, 1), (1, 1, 0), (1, 0, 0)\}.$
- (b) Find the basis for the subspace

$$w = \begin{bmatrix} x & y \\ 0 & t \end{bmatrix} : x + 2y + t = 0, \ y + t = 0$$
 of the

vector space of all real 2 × 2 matrics.

- (c) Show that the set of real valued discontinuous functions defined on a closed interval does not form a vector space.
- 6. Answer any one question:

10×1

(a) (i) Find a basis and dimension of the subspace w in of R^3 where

$$w = \{x, y, z\} \in R^3 : x + 2y + z = 0,$$

$$2x + y + 3z = 0\}.$$

(ii) Show that the set of all R-valued functions defined on [0, 1] having the property f(x) = f(1-x) is a vector space over R.

4

- (iii) If the vectors (0, 1, a), (1, a, 1), (a, 1, 0) of the vector space R^3 over R be linearly dependent, then find the value of a.
- (b) (i) Suppose $\{\alpha_1, \alpha_2, \alpha_3, \alpha_4\}$ be a basis of a vector space v over a field F and a nonzero vector β of v is expressed as $\beta = c_1\alpha_1 + c_2\alpha_2 + c_3\alpha_3 + c_4\alpha_4 : c_i \in F$
 - (i = 1, 2, 3, 4) then if $c_2 \neq 0$ then prove that $\{\alpha_1, \beta, \alpha_3, \alpha_4\}$ is a new basis.
 - (ii) Let A and B be two subspaces of a finite dimensional vector space V. Then A + B is also finite dimensional and

$$\dim(A+B) = \dim A + \dim B - \dim (A \cap B).$$

Unit - 4 (Group D)

- 7. Answer any three questions:
 - (a) Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ be given by $f(x, y) = (x^2, y^2 + \sin x)$. Then find the linear transformation for the derivative of f at (x, y).

[Turn Over]

5

 2×3

- (b) Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be a linear transformation defined by T(x, y, z) = (x + y, x z). Then obtain the dimension of the null space of T.
- (c) If $\phi: v_3 \to v_1$ and $\phi(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2$ then show that ϕ is not a linear transformation.
- (d) Define rank and nullity of a linear transformation.
- (e) Obtain the matrix of the linear mapping ϕ where $\phi: R^3 \to R^2$ is defined by $\phi(x, y, z) = (x + y + 2z, 3y 2z).$
- 8. Answer any one question:

1×10

- (a) (i) Let $T: U(F) \rightarrow V(F)$ be a linear transformation and U be finite dimensional then prove that rank of (T) + nullity (T) = dim U.
 - (ii) A matrix of a linear mapping $\phi: R^3 \to R^2$ relative to the order bases (0, 1, 1), (1, 0, 1), (1, 1, 0) of R^3 and (1, 0), (1, 2, 4)

(1, 1) of
$$R^2$$
 is $\begin{pmatrix} 1 & 2 & 4 \\ 2 & 1 & 0 \end{pmatrix}$. Find ϕ . 5

- (b) (i) Prove that a linear transformation $L: v \to w$ is non-singular if and only if the set $\{Lx_1, Lx_2, ... Lx_n\}$ is a basis of w whenever the set $\{x_1, x_2, ... x_n\}$ is a basis of v.
 - (ii) Show that the linear operator $V_3(R)$ defined by T(a, b, c) = (a+b, a-b, 2c) is invertible. Find a formula for T^{-1} .
 - (iii) The matrix m(T) of a linear mapping $T: \mathbb{R}^3 \to \mathbb{R}^2$ relative to the ordered basis ((0, 1, 1,), (1, 0, 1), (1, 1, 0)) of \mathbb{R}^3 and ((1, 0), (1, 1)) of \mathbb{R}^2 is $\begin{pmatrix} 1 & 2 & 4 \\ 2 & 1 & 0 \end{pmatrix}$. Find T.